[1] ZASLOFF M. Antimicrobial peptides of multicellular organisms[J]. Nature, 2002, 415(6870):389-395.
[2] LAI Y P, GALLO R L. AMPed up immunity:how antimicrobial peptides have multiple roles in immune defense[J]. Trends Immunol, 2009, 30(3):131-141.
[3] MANSOUR S C, PENA O M, HANCOCK R E W. Host defense peptides:front-line immunomodulators[J]. Trends Immunol, 2014, 35(9):443-450.
[4] PAIK S H, CHAKICHERLA A, HANSEN J N. Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168[J]. J Biol Chem, 1998, 273(36):23134-23142.
[5] KOUWEN T R H M, TRIP E N, DENHAM E L, et al. The large mechanosensitive channel MscL determines bacterial susceptibility to the bacteriocin sublancin 168[J]. Antimicrob Agents Chemother, 2009, 53(11):4702-4711.
[6] 王帅. 抗菌肽Sublancin对肉鸡坏死性肠炎和小鼠天然免疫的影响[D]. 北京:中国农业大学, 2017.
WANG S. Effects of antimicrobial peptide Sublancin on necrotic enteritis of broilers and the innate immunity of mice[D]. Beijing:China Agricultural University, 2017. (in Chinese)
[7] 张小梅. 黄芪多糖的免疫调节作用及抗肿瘤作用研究进展[J]. 大连大学学报, 2003, 24(6):101-104.
ZHANG X M. Advances in the immunomodulatory effects and anti-tumor effects of Astragalus polysaccharides[J]. Journal of Dalian University, 2003, 24(6):101-104. (in Chinese)
[8] LIU Q Y, YAO Y M, YU Y, et al. Astragalus polysaccharides attenuate postburn sepsis via inhibiting negative immunoregulation of CD4+ CD25high T cells[J]. PLoS One, 2011, 6(7):e19811.
[9] JIANG R Z, WANG Y, LUO H M, et al. Effect of the molecular mass of tremella polysaccharides on accelerated recovery from cyclophosphamide-induced leucopenia in rats[J]. Molecules, 2012, 17(12):3609-3617.
[10] HATTA H, TSUDA K, AKACHI S, et al. Productivity and some properties of egg yolk antibody (IgY) against human rotavirus compared with rabbit IgG[J]. Biosci Biotechnol Biochem, 1993, 57(3):450-454.
[11] PICHEL N, VIVARB M. Origin of thyroid dysfunction at the Saharawi refugee camps[J]. J Trace Elem Med Biol, 2018, 48:57.
[12] LIAO W, LIN J X, LEONARD W J. IL-2 family cytokines:new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation[J]. Curr Opin Immunol, 2011, 23(5):598-604.
[13] PARK H Y, YU A R, CHOI I W, et al. Immunostimulatory effects and characterization of a glycoprotein fraction from rice bran[J]. Int Immunopharmacol, 2013, 17(2):191-197.
[14] TZIANABOS A O. Polysaccharide immunomodulators as therapeutic agents:structural aspects and biologic function[J]. Clin Microbiol Rev, 2000, 13(4):523-533.
[15] 李波,韩文瑜,宋智娟,等. 抗菌肽的免疫调节活性及其在动物生产中的应用[J]. 中国饲料, 2014(4):14-17.
LI B, HAN W Y, SONG Z J, et al. Immunoregulatory of antimicrobial peptide and its application in animal production[J]. China Feed, 2014(4):14-17. (in Chinese)
[16] WANG S, WANG Q W, ZENG X F, et al. Use of the antimicrobial peptide Sublancin with combined antibacterial and immunomodulatory activities to protect against methicillin-resistant Staphylococcus aureus infection in mice[J]. J Agric Food Chem, 2017, 65(39):8595-8605.
[17] LIU Y, ZHANG S F, ZHANG F, et al. Adjuvant activity of Chinese herbal polysaccharides in inactivated veterinary rabies vaccines[J]. Int J Biol Macromol, 2012, 50(3):598-602.
[18] 赵弋清,罗霞,陈东辉,等. 不同剂量环磷酰胺诱导正常小鼠免疫抑制的对比研究[J]. 免疫学杂志, 2005, 21(3):122-124, 128.
ZHAO Y Q, LUO X, CHEN D H, et al. Comparison of immunosuppression induced by different doses of cyclophosphamide in normal mice[J]. Immunological Journal, 2005, 21(3):122-124, 128. (in Chinese)
[19] EL-ABASY M, MOTOBU M, NAKAMURA K, et al. Preventive and therapeutic effects of sugar cane extract on cyclophosphamide-induced immunosuppression in chickens[J]. Int Immunopharmacol, 2004, 4(8):983-990.
[20] CRUZ-CHAMORRO L, PUERTOLLANO M A, PUERTOLLANO E, et al. Examination of host immune resistance against Listeria monocytogenes infection in cyclophosphamide-treated mice after dietary lipid administration[J]. Clin Nutrit, 2007, 26(5):631-639.
[21] ATSAMO A D, NGUELEFACK T B, DATTÉ J Y, et al. Acute and subchronic oral toxicity assessment of the aqueous extract from the stem bark of Erythrina senegalensis DC (Fabaceae) in rodents[J]. J Ethnopharmacol, 2011, 134(3):697-702.
[22] SHEEJA K, KUTTAN G. Ameliorating effects of Andrographis paniculata extract against cyclophosphamide-induced toxicity in mice[J]. Asian Pac J Cancer Prev, 2006, 7(4):609-614.
[23] SHALIT I, KLETTER Y, HALPERIN D, et al. Immunomodulatory effects of moxifloxacin in comparison to ciprofloxacin and G-CSF in a murine model of cyclophosphamide-induced leukopenia[J]. Eur J Haematol, 2001, 66(5):287-296.
[24] BERGER M, LANINO E, CESARO S, et al. Feasibility and outcome of haploidentical hematopoietic stem cell transplantation with post-transplant high-dose cyclophosphamide for children and adolescents with hematologic malignancies:an AIEOP-GITMO retrospective multicenter study[J]. Biol Blood Marrow Transplant, 2016, 22(5):902-909.
[25] ZHAO L, ASHRAF M A. Influence of silver-hydroxyapatite nanocomposite coating on biofilm formation of joint prosthesis and its mechanism[J]. West Indian Med J, 2015, 64(5):506-513.
[26] TINDEMANS I, SERAFINI N, DI SANTO J P, et al. GATA-3 function in innate and adaptive immunity[J]. Immunity, 2014, 41(2):191-206.
[27] LIU Q, YU S, LI A, et al. Targeting interlukin-6 to relieve immunosuppression in tumor microenvironment[J]. Tumour Biol, 2017, 39(6):1010428317712445.
[28] NAKA T, NISHIMOTO N, KISHIMOTO T. The paradigm of IL-6:from basic science to medicine[J]. Arthritis Res, 2002, 4(S3):S233-S242.
[29] TANIGUCHI K, KARIN M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer[J]. Semin Immunol, 2014, 26(1):54-74.
[30] GUTHRIE G J K, ROXBURGH C S D, RICHARDS C H, et al. Circulating IL-6 concentrations link tumour necrosis and systemic and local inflammatory responses in patients undergoing resection for colorectal cancer[J]. Br J Cancer, 2013, 109(1):131-137.
[31] HOU H, FAN Y, WANG S K, et al. Immunomodulatory activity of Alaska pollock hydrolysates obtained by glutamic acid biosensor-Artificial neural network and the identification of its active central fragment[J]. J Funct Foods, 2016, 24:37-47.
[32] 张琰,程建峰,贺建荣,等. 黄芪多糖对环磷酰胺致小鼠骨髓抑制及毒性的保护作用[J]. 第四军医大学学报, 2003, 24(5):447-448.
ZHANG Y, CHENG J F, HE J R, et al. Protection of astragalus polyaaccharidcs on toxicity and bone marrow inhibition caused by cyclophosphamide[J]. Journal of the Fourth Military Medical University, 2003, 24(5):447-448. (in Chinese)
[33] ZHU Y L, WANG L Y, WANG J X, et al. Protective effects of paeoniflorin and albiflorin on chemotherapy-induced myelosuppression in mice[J]. Chin J Nat Med, 2016, 14(8):599-606.
[34] 徐尚福,杨天华,吴芹,等. 黄芪多糖对环磷酰胺引起小鼠骨髓抑制后造血功能的修复作用[J]. 遵义医学院学报, 2011, 34(5):473-476.
XU S F, YANG T H, WU Q, et al. Restorative effect of astragalus polysaccharides on hematopoietic function in cyclophosphamide-induced bone marrow depression in mice[J]. Acta Academiae Medicinae Zunyi, 2011, 34(5):473-476. (in Chinese)
[35] 李秀,初杰,李影迪,等. 当归/黄芪多糖对腹腔注射环磷酰胺小鼠骨髓造血影响随机平行对照研究[J]. 实用中医内科杂志, 2017, 31(5):52-58.
LI X, CHU J, LI Y D, et al. Angelica sinensis/astragalus polysaccharides on hematopoietic function of bone barrow of mice induced by intraperitoneal injection of cyclophosphamide impact a randomized parallel controlled study[J]. Journal of Practical Traditional Chinese Internal Medicine, 2017, 31(5):52-58. (in Chinese)
[36] SYRJÄLÄ H, SURCEL H M, ILONEN J. Low CD4/CD8 T lymphocyte ratio in acute myocardial infarction[J]. Clin Exp Immunol, 1991, 83(2):326-328.
[37] MCBRIDE J A, STRIKER R. Imbalance in the game of T cells:what can the CD4/CD8 T-cell ratio tell us about HIV and health?[J]. PLoS Pathog, 2017, 13(11):e1006624.
[38] TAKEUCHI A, ETO M, YAMADA H, et al. A reduction of recipient regulatory T cells by cyclophosphamide contributes to an anti-tumor effect of nonmyeloablative allogeneic stem cell transplantation in mice[J]. Int J Cancer, 2012, 130(2):365-376.
[39] LIU P, JAFFAR J, HELLSTROM I, et al. Administration of cyclophosphamide changes the immune profile of tumor-bearing mice[J]. J Immunother, 2010, 33(1):53-59.
[40] GHIRINGHELLI F, LARMONIER N, SCHMITT E, et al. CD4+ CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative[J]. Eur J Immunol, 2004, 34(2):336-344.
[41] HONG S H, YOON I H, KIM Y H, et al. High-dose cyclophosphamide-mediated anti-tumor effects by the superior expansion of CD44high cells after their selective depletion[J]. Immunobiology, 2010, 215(3):182-193.
[42] BRODE S, RAINE T, ZACCONE P, et al. Cyclophosphamide-induced type-1 diabetes in the NOD mouse is associated with a reduction of CD4+ CD25+ Foxp3+ regulatory T cells[J]. J Immunol, 2006, 177(10):6603-6612.
[43] LUTSIAK M E, SEMNANI R T, DE RASCALIS P, et al. Inhibition of CD4+ 25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide[J]. Blood, 2005, 105(7):2862-2868. |