[1] |
KIM O, CHAE C. Comparison of reverse transcription polymerase chain reaction, immunohistochemistry, and in situ hybridization for the detection of porcine epidemic diarrhea virus in pigs[J]. Can J Vet Res, 2002, 66(2):112-116.
|
[2] |
JUNG K, SAIF L J, WANG Q H. Porcine epidemic diarrhea virus (PEDV):an update on etiology, transmission, pathogenesis, and prevention and control[J]. Virus Res, 2020, 286:198045.
|
[3] |
SONG D, PARK B. Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines[J]. Virus Genes, 2012, 44(2):167-175.
|
[4] |
万颖, 周改静, 麻园, 等. 猪流行性腹泻病毒N蛋白阻断ELISA抗体检测方法的建立及初步应用[J]. 畜牧兽医学报, 2022, 53(4):1173-1181.WAN Y, ZHOU G J, MA Y, et al. Development and application of N-protein blocking ELISA for detecting porcine epidemic diarrhea virus antibodies[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4):1173-1181. (in Chinese)
|
[5] |
WANG F Q, WANG M, ZHANG L, et al. Generation and functional analysis of single chain variable fragments (scFvs) targeting the nucleocapsid protein of Porcine epidemic diarrhea virus[J]. Appl Microbiol Biotechnol, 2022, 106(3):995-1009.
|
[6] |
DONG S J, KONG N, ZHANG Y, et al. TARDBP inhibits porcine epidemic diarrhea virus replication through degrading viral nucleocapsid protein and activating type I interferon signaling[J]. J Virol, 2022, 96(10):e0007022.
|
[7] |
冯力, 孙东波, 陈建飞, 等. 猪流行性腹泻病毒N蛋白单克隆抗体的制备与鉴定[J]. 中国预防兽医学报, 2008, 30(3):190-193.FENG L, SUN D B, CHEN J F, et al. Preparation and characterization of the monoclonal antibodies against nucleocapsid protein of PEDV[J]. Chinese Journal of Preventive Veterinary Medicine, 2008, 30(3):190-193. (in Chinese)
|
[8] |
QIN W Z, KONG N, ZHANG Y, et al. Nuclear ribonucleoprotein RALY targets virus nucleocapsid protein and induces autophagy to restrict porcine epidemic diarrhea virus replication[J]. J Biol Chem, 2022, 298(8):102190.
|
[9] |
LOBATO I M, O'SULLIVAN C K. Recombinase polymerase amplification:basics, applications and recent advances[J]. TrAC Trends Analyt Chem, 2018, 98:19-35.
|
[10] |
DAHER R K, STEWART G, BOISSINOT M, et al. Recombinase polymerase amplification for diagnostic applications[J]. Clin Chem, 2016, 62(7):947-958.
|
[11] |
MOTA D S, GUIMARÃES J M, GANDARILLA A M D, et al. Recombinase polymerase amplification in the molecular diagnosis of microbiological targets and its applications[J]. Can J Microbiol, 2022, 68(6):383-402.
|
[12] |
吴耀东, 徐民俊, 郑文斌, 等. 重组酶聚合酶扩增技术及其在动物病原快速检测中的应用[J]. 中国兽医学报, 2016, 36(10):1797-1802.WU Y D, XU M J, ZHENG W B, et al. Development of recombinant polymerase amplification technology and its applications in quick diagnosis of animal pathogen[J]. Chinese Journal of Veterinary Science, 2016, 36(10):1797-1802. (in Chinese)
|
[13] |
TOMAR S, LAVICKOVA B, GUIDUCCI C. Recombinase polymerase amplification in minimally buffered conditions[J]. Biosens Bioelectron, 2022, 198:113802.
|
[14] |
MUNAWAR M A. Critical insight into recombinase polymerase amplification technology[J]. Expert Rev Mol Diagn, 2022, 22(7):725-737.
|
[15] |
PIEPENBURG O, WILLIAMS C H, STEMPLE D L, et al. DNA detection using recombination proteins[J]. PLoS Biol, 2006, 4(7):e204.
|
[16] |
ZHAO L W, WANG J C, SUN X X, et al. Development and evaluation of the rapid and sensitive RPA assays for specific detection of Salmonella spp. in food samples[J]. Front Cell Infect Microbiol, 2021, 11:631921.
|
[17] |
LI J, ZHONG Q, SHANG M Y, et al. Preliminary evaluation of rapid visual identification of Burkholderia pseudomallei using a newly developed lateral flow strip-based recombinase polymerase amplification (LF-RPA) system[J]. Front Cell Infect Microbiol, 2022, 11:804737.
|
[18] |
罗雪琮, 安梦楠, 吴元华, 等. 重组酶聚合酶扩增技术在植物病毒检测中的应用[J]. 生物技术通报, 2022, 38(2):269-280.LUO X C, AN M N, WU Y H, et al. Applications of recombinase polymerase amplification in plant virus detection[J]. Biotechnology Bulletin, 2022, 38(2):269-280. (in Chinese)
|
[19] |
WANG F, WANG Y, LIU X, et al. Rapid, simple, and highly specific detection of Streptococcus pneumonia with visualized recombinase polymerase amplification[J]. Front Cell Infect Microbiol, 2022, 12:878881.
|
[20] |
REVELES-FÉLIX S, CARREÓN-NÁPOLES R, MENDOZA-ELVIRA S, et al. Emerging strains of porcine epidemic diarrhoea virus (PEDV) in Mexico[J]. Transbound Emerg Dis, 2020, 67(2):1035-1041.
|
[21] |
LEE S, LEE C. Genomic and antigenic characterization of porcine epidemic diarrhoea virus strains isolated from South Korea, 2017[J]. Transbound Emerg Dis, 2018, 65(4):949-956.
|
[22] |
张坤, 何启盖. 猪流行性腹泻病毒、猪传染性胃肠炎病毒和猪A群轮状病毒多重RT-PCR检测方法的建立及临床应用[J]. 畜牧兽医学报, 2010, 41(8):1001-1005.ZHANG K, HE Q G. Establishment and clinical application of a multiplex reverse transcription-PCR for detection of porcine epidemic diarrhea virus, porcine transmissible gastroenteritis virus and porcine group a rotavirus[J]. Acta Veterinaria et Zootechnica Sinica, 2010, 41(8):1001-1005. (in Chinese)
|
[23] |
修金生, 周伦江, 陈如敬, 等. 猪流行性腹泻病毒SYBR Ⅰ实时荧光定量RT-PCR检测方法的建立[J]. 中国兽医科学, 2012, 42(2):160-165.XIU J S, ZHOU L J, CHEN R J, et al. Development of a real time RT-PCR assay based on SYBR Green Ⅰ for rapid diagnosis of porcine epidemic diarrhea virus[J]. Chinese Veterinary Science, 2012, 42(2):160-165. (in Chinese)
|
[24] |
GERBER P F, LELLI D, ZHANG J Q, et al. Diagnostic evaluation of assays for detection of antibodies against porcine epidemic diarrhea virus (PEDV) in pigs exposed to different PEDV strains[J]. Prev Vet Med, 2016, 135:87-94.
|
[25] |
NEFEDEVA M, TITOV I, MALOGOLOVKIN A. Molecular characteristics of a novel recombinant of porcine epidemic diarrhea virus[J]. Arch Virol, 2019, 164(4):1199-1204.
|
[26] |
WANG X W, WANG M, ZHAN J, et al. Pathogenicity and immunogenicity of a new strain of porcine epidemic diarrhea virus containing a novel deletion in the N gene[J]. Vet Microbiol, 2020, 240:108511.
|
[27] |
LI N, WANG L, WANG F, et al. Rapid detection of Klebsiella pneumoniae carrying virulence gene rmpA2 by recombinase polymerase amplification combined with lateral flow strips[J]. Front Cell Infect Microbiol, 2022, 12:877649.
|
[28] |
YANG X H, ZHAO P P, DONG Y, et al. An isothermal recombinase polymerase amplification and lateral flow strip combined method for rapid on-site detection of Vibrio vulnificus in raw seafood[J]. Food Microbiol, 2021, 98:103664.
|
[29] |
KUBO S, NIIMI H, KITAJIMA I. Rapid detection of blood and semen mRNA markers by reverse transcription-recombinase polymerase amplification[J]. Forensic Sci Int Genet, 2022, 58:102665.
|
[30] |
IVANOV A V, POPRAVKO D S, SAFENKOVA I V, et al. Rapid full-cycle technique to control adulteration of meat products:integration of accelerated sample preparation, recombinase polymerase amplification, and test-strip detection[J]. Molecules, 2021, 26(22):6804.
|
[31] |
DING G M, FU Y G, LI B Y, et al. Development of a multiplex RT-PCR for the detection of major diarrhoeal viruses in pig herds in China[J]. Transbound Emerg Dis, 2020, 67(2):678-685.
|
[32] |
蔡应奎, 刘新生, 张丽萍, 等. 猪嵴病毒重组酶聚合酶扩增结合侧流层析试纸条(RPA-LFD)快速诊断方法的建立与应用[J]. 中国兽医科学, 2020, 50(7):820-824.CAI Y K, LIU X S, ZHANG L P, et al. Development and application of a recombinase polymerase amplification combined with a lateral flow dipstick (RPA-LFD) assay for rapid diagnosis of porcine kobuvirus[J]. Chinese Veterinary Science, 2020, 50(7):820-824. (in Chinese)
|
[33] |
WANG H B, DONG J J, ZHANG T, et al. A novel rapid detection of Senecavirus A using recombinase polymerase amplification (RPA) coupled with lateral flow (LF) dipstrip[J]. Anal Biochem, 2022, 646:114627.
|