畜牧兽医学报 ›› 2021, Vol. 52 ›› Issue (8): 2093-2106.doi: 10.11843/j.issn.0366-6964.2021.08.003
严雅瑶1, 顾敏1,2,3*, 刘秀梵1,2,3
收稿日期:
2020-12-28
出版日期:
2021-08-23
发布日期:
2021-08-21
通讯作者:
顾敏,主要从事动物流感病毒研究,E-mail:gumin@yzu.edu.cn;Tel:0514-87972247
作者简介:
严雅瑶(1997-),女,江苏南通人,硕士生,主要从事禽流感病毒致病机制研究,E-mail:1425497758@qq.com
基金资助:
YAN Yayao1, GU Min1,2,3*, LIU Xiufan1,2,3
Received:
2020-12-28
Online:
2021-08-23
Published:
2021-08-21
摘要: 2013年春,我国首次出现人感染H7N9亚型禽流感疫情,对家禽养殖和公众健康均产生了严重危害,并且在第5波流行期又演变出血凝素(hemagglutinin,HA)蛋白裂解位点处存在插入突变的高致病性禽流感病毒株。HA作为A型流感病毒表面表达丰度最高的糖蛋白,在介导病毒与宿主细胞表面受体的结合、促进病毒囊膜与细胞膜的融合、刺激机体产生中和抗体等方面具有至关重要的作用。本文围绕H7N9病毒,简要综述了HA蛋白的结构与功能,及其关键功能氨基酸位点变异影响病毒生物学特性的研究进展,以期为深入解析HA蛋白在H7N9病毒感染致病中的作用提供重要参考。
中图分类号:
严雅瑶, 顾敏, 刘秀梵. HA蛋白位点变异影响H7N9亚型流感病毒特性的研究进展[J]. 畜牧兽医学报, 2021, 52(8): 2093-2106.
YAN Yayao, GU Min, LIU Xiufan. Advance in the Influence of Amino Acid Variation in HA Protein on the Biological Properties of H7N9 Subtype Influenza Virus[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(8): 2093-2106.
[1] | IMAI M, WATANABE T, KISO M, et al. A highly pathogenic avian H7N9 influenza virus isolated from a human is lethal in some ferrets infected via respiratory droplets[J]. Cell Host Microbe, 2017, 22(5):615-626. |
[2] | SHI J Z, DENG G H, KONG H H, et al. H7N9 virulent mutants detected in chickens in China pose an increased threat to humans[J]. Cell Res, 2017, 27(12):1409-1421. |
[3] | SU S, GU M, LIU D, et al. Epidemiology, evolution, and pathogenesis of H7N9 influenza viruses in five epidemic waves since 2013 in China[J]. Trends Microbiol, 2017, 25(9):713-728. |
[4] | Food and Agriculture Organization. H7N9 situation update[EB/OL].[2021-07-07]. http://www.fao.org/ag/againfo/programmes/en/empres/H7N9/situation_update.html. |
[5] | QIU Y, SUN R Z, HOU G Y, et al. Novel reassortant H7N2 originating from the H7N9 highly pathogenic avian influenza viruses in China, 2019[J]. J Infect, 2019, 79(5):462-470. |
[6] | WU H B, LU R F, PENG X M, et al. Molecular characterization of a novel reassortant H7N6 subtype avian influenza virus from poultry in Eastern China, in 2016[J]. Arch Virol, 2017, 162(5):1341-1347. |
[7] | LI C J, CHEN H L. H7N9 influenza virus in China[J]. Cold Spring Harb Perspect Med, 2020:a038349. |
[8] | SHI J Z, DENG G H, MA S J, et al. Rapid evolution of H7N9 highly pathogenic viruses that emerged in China in 2017[J]. Cell Host Microbe, 2018, 24(4):558-568. |
[9] | JIANG W M, HOU G Y, LI J P, et al. Antigenic variant of highly pathogenic avian influenza A(H7N9) virus, China, 2019[J]. Emerging Infect Dis, 2020, 26(2):379-380. |
[10] | YU D S, XIANG G F, ZHU W F, et al. The re-emergence of highly pathogenic avian influenza H7N9 viruses in humans in mainland China, 2019[J]. Euro Surveill, 2019, 24(21):1900273. |
[11] | WEBSTER R G, BEAN W J, GORMAN O T, et al. Evolution and ecology of influenza A viruses[J]. Microbiol Rev, 1992, 56(1):152-179. |
[12] | VASIN A V, TEMKINA O A, EGOROV V V, et al. Molecular mechanisms enhancing the proteome of influenza A viruses:an overview of recently discovered proteins[J]. Virus Res, 2014, 185:53-63. |
[13] | WU Y, WU Y, TEFSEN B, et al. Bat-derived influenza-like viruses H17N10 and H18N11[J]. Trends Microbiol, 2014, 22(4):183-191. |
[14] | WU A P, SU C H, WANG D Y, et al. Sequential reassortments underlie diverse influenza H7N9 genotypes in China[J]. Cell Host Microbe, 2013, 14(4):446-452. |
[15] | LIU D, SHI W F, SHI Y, et al. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection:phylogenetic, structural, and coalescent analyses[J]. Lancet, 2013, 381(9881):1926-1932. |
[16] | ZHANG J H, YE H J, LI H N, et al. Evolution and antigenic drift of influenza A (H7N9) viruses, China, 2017-2019[J]. Emerg Infect Dis, 2020, 26(8):1906-1911. |
[17] | 崔欢. 一株鹌鹑源甲型H7N9亚型流感病毒的致病性及传播能力研究[D]. 保定:河北农业大学, 2020.CUI H. Pathogenicity and transmissibility of influenza A (H7N9) Virus isolated from Quail[D]. Baoding:Hebei Agricultural University, 2020.(in Chinese) |
[18] | MA M J, YANG Y, FANG L Q. Highly pathogenic avian H7N9 influenza viruses:recent challenges[J]. Trends Microbiol, 2019, 27(2):93-95. |
[19] | BI Y H, LI J, LI S Q, et al. Dominant subtype switch in avian influenza viruses during 2016-2019 in China[J]. Nat Commun, 2020, 11(1):5909. |
[20] | CHANG P X, SEALY J E, SADEYEN J R, et al. Amino acid residue 217 in the hemagglutinin glycoprotein is a key mediator of avian influenza H7N9 virus antigenicity[J]. J Virol, 2018, 93(1):e01627-18. |
[21] | CHANG P X, SEALY J E, SADEYEN J R, et al. Immune escape adaptive mutations in the H7N9 avian influenza hemagglutinin protein increase virus replication fitness and decrease pandemic potential[J]. J Virol, 2020, 94(1):e00216-20. |
[22] | RUSSELL C J. Acid-induced membrane fusion by the hemagglutinin protein and its role in influenza virus biology[J]. Curr Top Microbiol Immunol, 2014, 385:93-116. |
[23] | LIU D, ZHANG Z J, HE L H, et al. Characteristics of the emerging chicken-origin highly pathogenic H7N9 viruses:a new threat to public health and poultry industry[J]. J Infect, 2018, 76(2):217-220. |
[24] | BAI R, SIKKEMA R S, MUNNINK B B O, et al. Exploring utility of genomic epidemiology to trace origins of highly pathogenic influenza A/H7N9 in Guangdong[J]. Virus Evol, 2020, 6(2):veaa097. |
[25] | SUN X J, BELSER J A, YANG H, et al. Identification of key hemagglutinin residues responsible for cleavage, acid stability, and virulence of fifth-wave highly pathogenic avian influenza A(H7N9) viruses[J]. Virology, 2019, 535:232-240. |
[26] | CHUTINIMITKUL S, VAN RIEL D, MUNSTER V J, et al. In vitro assessment of attachment pattern and replication efficiency of H5N1 influenza A viruses with altered receptor specificity[J]. J Virol, 2010, 84(13):6825-6833. |
[27] | WAN H Q, SORRELL E M, SONG H C, et al. Replication and transmission of H9N2 influenza viruses in ferrets:evaluation of pandemic potential[J]. PLoS One, 2008, 3(8):e2923. |
[28] | SHIRYAEV S A, CHERNOV A V, GOLUBKOV V S, et al. High-resolution analysis and functional mapping of cleavage sites and substrate proteins of furin in the human proteome[J]. PLoS One, 2013, 8(1):e54290. |
[29] | ISIN B, DORUKER P, BAHAR I. Functional motions of influenza virus hemagglutinin:a structure-based analytical approach[J]. Biophys J, 2002, 82:569-581. |
[30] | SHI Y, WU Y, ZHANG W, et al. Enabling the ‘host jump’:structural determinants of receptor-binding specificity in influenza A viruses[J]. Nat Rev Microbiol, 2014, 12(12):822-831. |
[31] | SHI Y, ZHANG W, WANG F, et al. Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses[J]. Science, 2013, 342(6155):243-247. |
[32] | RUSSELL R J, STEVENS D J, HAIRE L F, et al. Avian and human receptor binding by hemagglutinins of influenza A viruses[J]. Glycoconj J, 2006, 23(1-2):85-92. |
[33] | BANKS J, SPEIDEL E S, MOORE E, et al. Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy[J]. Arch Virol, 2001, 146(5):963-973. |
[34] | GU M, LI Q H, GAO R Y, et al. The T160A hemagglutinin substitution affects not only receptor binding property but also transmissibility of H5N1 clade 2. 3.4 avian influenza virus in guinea pigs[J]. Vet Res, 2017, 48(1):7. |
[35] | ROSENTHAL P B, ZHANG X D, FORMANOWSKI F, et al. Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus[J]. Nature, 1998, 396(6706):92-96. |
[36] | PAUL S S, MOK C K, MAK T M, et al. A cross-clade H5N1 influenza A virus neutralizing monoclonal antibody binds to a novel epitope within the vestigial esterase domain of hemagglutinin[J]. Antiviral Res, 2017, 144:299-310. |
[37] | 平继辉. H9N2亚型禽流感病毒抗原变异及感染哺乳动物分子机制的研究[D]. 南京:南京农业大学, 2008.PING J H. The molecular basis of antigenic variation and crossing host barrier to infect mammalian model of H9N2 avian influenza viruses[D]. Nanjing:Nanjing Agricultural University, 2008.(in Chinese) |
[38] | DUNAND C J H, LEON P E, HUANG M, et al. Both neutralizing and non-neutralizing human H7N9 influenza vaccine-induced monoclonal antibodies Confer Protection[J]. Cell Host Microbe, 2016, 19(6):800-813. |
[39] | EKIERT D C, BHABHA G, ELSLIGER M A, et al. Antibody recognition of a highly conserved influenza virus epitope[J]. Science, 2009, 324(5924):246-251. |
[40] | EKIERT D C, FRIESEN R H E, BHABHA G, et al. A highly conserved neutralizing epitope on group 2 influenza A viruses[J]. Science, 2011, 333(6044):843-850. |
[41] | EKIERT D C, KASHYAP A K, STEEL J, et al. Cross-neutralization of influenza A viruses mediated by a single antibody loop[J]. Nature, 2012, 489(7417):526-532. |
[42] | BYRD-LEOTIS L, GALLOWAY S E, AGBOGU E, et al. Influenza hemagglutinin (HA) stem region mutations that stabilize or destabilize the structure of multiple HA subtypes[J]. J Virol, 2015, 89(8):4504-4516. |
[43] | WAGNER R, HERWIG A, AZZOUZ N, et al. Acylation-mediated membrane anchoring of avian influenza virus hemagglutinin is essential for fusion pore formation and virus infectivity[J]. J Virol, 2005, 79(10):6449-6458. |
[44] | TAKEDA M, LESER G P, RUSSELL C J, et al. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion[J]. Proc Natl Acad Sci U S A, 2003, 100(25):14610-14617. |
[45] | OHUCHI M, OHUCHI R, MATSUMOTO A. Control of biological activities of influenza virus hemagglutinin by its carbohydrate moiety[J]. Microbiol Immunol, 1999, 43(12):1071-1076. |
[46] | YIN Y C, ZHANG X J, QIAO Y Y, et al. Glycosylation at 11Asn on hemagglutinin of H5N1 influenza virus contributes to its biological characteristics[J]. Vet Res, 2017, 48(1):81. |
[47] | ROBERTS P C, GARTEN W, KLENK H D. Role of conserved glycosylation sites in maturation and transport of influenza A virus hemagglutinin[J]. J Virol, 1993, 67(6):3048-3060. |
[48] | VARKI A, SCHAUER R. Sialic acids[M]//VARKI A, CUMMINGS R D, ESKO J D, et al. Essentials of Glycobiology. 2nd ed. Cold Spring Harbor, N. Y.:Cold Spring Harbor Laboratory Press, 2009. |
[49] | TRAVING C, SCHAUER R. Structure, function and metabolism of sialic acids[J]. Cell Mol Life Sci, 1998, 54(12):1330-1349. |
[50] | ROGERS G N, PRITCHETT T J, LANE J L, et al. Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection:selection of receptor specific variants[J]. Virology, 1983, 131(2):394-408. |
[51] | MAIR C M, LUDWIG K, HERRMANN A, et al. Receptor binding and pH stability-how influenza A virus hemagglutinin affects host-specific virus infection[J]. Biochim Biophys Acta, 2014, 1838(4):1153-1168. |
[52] | XU Y, PENG RC, ZHANG W, et al. Avian-to-Human receptor-binding adaptation of avian H7N9 influenza virus hemagglutinin[J]. Cell Rep, 2019, 29(8):2217-2228. |
[53] | DE VRIES R P, PENG W J, GRANT O C, et al. Three mutations switch H7N9 influenza to human-type receptor specificity[J]. PLoS Pathog, 2017, 13(6):e1006390. |
[54] | THARAKARAMAN K, JAYARAMAN A, RAMAN R, et al. Glycan receptor binding of the influenza A virus H7N9 hemagglutinin[J]. Cell, 2013, 153(7):1486-1493. |
[55] | BRADLEY K C, GALLOWAY S E, LASANAJAK Y, et al. Analysis of influenza virus hemagglutinin receptor binding mutants with limited receptor recognition properties and conditional replication characteristics[J]. J Virol, 2011, 85(23):12387-12398. |
[56] | MATROSOVICH M, TUZIKOV A, BOVIN N, et al. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals[J]. J Virol, 2000, 74(18):8502-8512. |
[57] | PENG W J, BOUWMAN K M, MCBRIDE R, et al. Enhanced human-type receptor binding by ferret-transmissible H5N1 with a K193T mutation[J]. J Virol, 2018, 92(10):e02016-17. |
[58] | GAMBARYAN A S, MATROSOVICH T Y, PHILIPP J, et al. Receptor-binding profiles of H7 subtype influenza viruses in different host species[J]. J Virol, 2012, 86(8):4370-4379. |
[59] | ZHENG B J, CHAN K H, ZHANG A J X, et al. D225G mutation in hemagglutinin of pandemic influenza H1N1(2009) virus enhances virulence in mice[J]. Exp Biol Med, 2010, 235(8):981-988. |
[60] | GLASER L, STEVENS J, ZAMARIN D, et al. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity[J]. J Virol, 2005, 79(17):11533-11536. |
[61] | SANTOS J J S, ABENTE E J, OBADAN A O, et al. Plasticity of amino acid residue 145 near the receptor binding site of H3 swine influenza A viruses and its impact on receptor binding and antibody recognition[J]. J Virol, 2019, 93(2):e01413-18. |
[62] | LI Y, BOSTICK D L, SULLIVAN C B, et al. Single hemagglutinin mutations that alter both antigenicity and receptor binding avidity influence influenza virus antigenic clustering[J]. J Virol, 2013, 87(17):9904-9910. |
[63] | XIONG X L, COOMBS P J, MARTIN S R, et al. Receptor binding by a ferret-transmissible H5 avian influenza virus[J]. Nature, 2013, 497(7449):392-396. |
[64] | LAZAROWITZ S G, COMPANS R W, CHOPPIN P W. Proteolytic cleavage of the hemagglutinin polypeptide of influenza virus. Function of the uncleaved polypeptide HA[J]. Virology, 1973, 52(1):199-212. |
[65] | STEINHAUER D A. Role of hemagglutinin cleavage for the pathogenicity of influenza virus[J]. Virology, 1999, 258(1):1-20. |
[66] | WALKER J A, MOLLOY S S, THOMAS G, et al. Sequence specificity of furin, a proprotein-processing endoprotease, for the hemagglutinin of a virulent avian influenza virus[J]. J Virol, 1994, 68(2):1213-1218. |
[67] | HORIMOTO T, NAKAYAMA K, SMEEKENS S P, et al. Proprotein-Processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses[J]. J Virol, 1994, 68(9):6074-6078. |
[68] | ZHIRNOV O P, IKIZLER M R, WRIGHT P F. Cleavage of influenza a virus hemagglutinin in human respiratory epithelium is cell associated and sensitive to exogenous antiproteases[J]. J Virol, 2002, 76(17):8682-8689. |
[69] | WEBSTER R G, ROTT R. Influenza virus a pathogenicity:the pivotal role of hemagglutinin[J]. Cell, 1987, 50(5):665-666. |
[70] | CROSS K J, LANGLEY W A, RUSSELL R J, et al. Composition and functions of the influenza fusion peptide[J]. Protein Pept Lett, 2009, 16(7):766-778. |
[71] | HOLDBROOK D A, BURMANN B M, HUBER R G, et al. A spring-loaded mechanism governs the clamp-like dynamics of the skp chaperone[J]. Structure, 2017, 25(7):1079-1088. |
[72] | WEBER T, PAESOLD G, GALLI C, et al. Evidence for H+-induced insertion of influenza hemagglutinin HA2 N-terminal segment into viral membrane[J]. J Biol Chem, 1994, 269(28):18353-18358. |
[73] | GRUENKE J A, ARMSTRONG R T, NEWCOMB W W, et al. New insights into the spring-loaded conformational change of influenza virus hemagglutinin[J]. J Virol, 2002, 76(9):4456-4466. |
[74] | WAGNER R, HEUERA D, WOLFF T, et al. N-glycans attached to hemagglutinin in the head region and the stem domain control growth of influenza viruses by different mechanisms[J]. Int Congr Ser, 2001, 1219:375-382. |
[75] | SCHOLTISSEK C. Stability of infectious influenza A viruses to treatment at low pH and heating[J]. Arch Virol, 1985, 85(1-2):1-11. |
[76] | GALLOWAY S E, REED M L, RUSSELL C J, et al. Influenza HA subtypes demonstrate divergent phenotypes for cleavage activation and pH of fusion:implications for host range and adaptation[J]. PLoS Pathog, 2013, 9(2):e1003151. |
[77] | HERFST S, MOK C K P, VAN DEN BRAND J M A, et al. Human clade 2. 3.4.4 A/H5N6 influenza virus lacks mammalian adaptation markers and does not transmit via the airborne route between ferrets[J]. mSphere, 2018, 3(1):e00405-17. |
[78] | GABBARD J D, DLUGOLENSKI D, VAN RIEL D, et al. Novel H7N9 influenza virus shows low infectious dose, high growth rate, and efficient contact transmission in the guinea pig model[J]. J Virol, 2014, 88(3):1502-1512. |
[79] | RUSSIER M, YANG G H, REHG J E, et al. Molecular requirements for a pandemic influenza virus:an acid-stable hemagglutinin protein[J]. Prod Natl Acad Sci U S A, 2016, 113(6):1636-1641. |
[80] | RUSSELL C J, HU M, OKDA F A. Influenza hemagglutinin protein stability, activation, and pandemic risk[J]. Trends Microbiol, 2018, 26(10):841-853. |
[81] | ZARAKET H, BRIDGES O A, RUSSELL C J. The pH of activation of the hemagglutinin protein regulates H5N1 influenza virus replication and pathogenesis in mice[J]. J Virol, 2013, 87(9):4826-4834. |
[82] | YIN X, DENG G H, ZENG X Y, et al. Genetic and biological properties of H7N9 avian influenza viruses detected after application of the H7N9 poultry vaccine in China[J]. PLoS Pathog, 2021, 17(4):e1009561. |
[83] | WANG Y, LV Y H, NIU X F, et al. L226Q mutation on influenza H7N9 virus hemagglutinin increases receptor-binding avidity and leads to biased antigenicity evaluation[J]. J Virol, 2020, 94(20):e00667-20. |
[84] | HENSLEY S E, DAS S R, BAILEY A L, et al. Hemagglutinin receptor binding avidity drives influenza a virus antigenic drift[J]. Science, 2009, 326(5953):734-736. |
[85] | DANIELS F S, DOWNIE J C, HAY A J, et al. Fusion mutants of the influenza virus hemagglutinin glycoprotein[J]. Cell, 1985, 40(2):431-439. |
[86] | HE F, PRABAKARAN M, TAN Y R, et al. Development of dual-function ELISA for effective antigen and antibody detection against H7 avian influenza virus[J]. BMC Microbiol, 2013, 13:219. |
[87] | IGNATIEVA A V, TIMOFEEVA T A, RUDNEVA I A, et al. Effect of amino acid substitutions in the small subunit of the avian H5N2 influenza virus hemagglutinin on selection of the mutants, resistant to neutralizing monoclonal antibodies[J]. Mol Biol, 2015, 49(2):303-311. |
[88] | PING J H, LI C J, DENG G H, et al. Single-amino-acid mutation in the HA alters the recognition of H9N2 influenza virus by a monoclonal antibody[J]. Biochem Biophys Res Commun, 2008, 371(1):168-171. |
[89] | CHEN Z Y, BAZ M, LU J, et al. Development of a high-yield live attenuated H7N9 influenza virus vaccine that provides protection against homologous and heterologous H7 wild-type viruses in ferrets[J]. J Virol, 2014, 88(12):7016-7023. |
[90] | DANIELS P S, JEFFRIES S, YATES P, et al. The receptor-binding and membrane-fusion properties of influenza virus variants selected using anti-haemagglutinin monoclonal antibodies[J]. ENBO J, 1987, 6(5):1459-1465. |
[91] | LI X, GAO Y M, YE Z P. A single amino acid substitution at residue 218 of hemagglutinin improves the growth of influenza A(H7N9) candidate vaccine viruses[J]. J Virol, 2019, 93(19):e00570-19. |
[92] | LIU L Q, LU J, LI Z, et al. 220 mutation in the hemagglutinin of avian influenza A (H7N9) virus alters antigenicity during vaccine strain development[J]. Hum Vaccin Immunother, 2018, 14(3):532-539. |
[93] | XU R, DE VRIES R P, ZHU X Y, et al. Preferential recognition of avian-like receptors in human influenza A H7N9 viruses[J]. Science, 2013, 342(6163):1230-1235. |
[94] | RAMOS I, KRAMMER F, HAI R, et al. H7N9 influenza viruses interact preferentially with α2, 3-linked sialic acids and bind weakly to α2, 6-linked sialic acids[J]. J Gen Virol, 2013, 94(11):2417-2423. |
[95] | LIN Y P, WHARTON S A, MARTÍN J, et al. Adaptation of egg-grown and transfectant influenza viruses for growth in mammalian cells:selection of hemagglutinin mutants with elevated pH of membrane fusion[J]. Virology, 1997, 233(2):402-410. |
[96] | SCHRAUWEN E J, RICHARD M, BURKE D F, et al. Amino acid substitutions that affect receptor binding and stability of the hemagglutinin of influenza A/H7N9 Virus[J]. J Virol, 2016, 90(7):3794-3799. |
[1] | 吕亚迪, 杨洁, 谢文婷, 徐婷, 陈瑞爱. 共表达膜结合型与可溶性H9N2亚型禽流感病毒HA蛋白的重组基因Ⅶ型新城疫病毒的构建及免疫效果评价[J]. 畜牧兽医学报, 2024, 55(5): 2123-2134. |
[2] | 毛秋艳, 周淑宁, 刘朔, 彭程, 尹馨, 张雅馨, 周婉婷, 李金平, 侯广宇, 蒋文明, 宋厚辉, 刘华雷. H3亚型禽流感病毒荧光定量RT-PCR检测方法的建立与应用[J]. 畜牧兽医学报, 2024, 55(3): 1137-1146. |
[3] | 高欣, 孙怡朋. A型流感病毒诱导细胞炎症反应的研究进展[J]. 畜牧兽医学报, 2024, 55(2): 481-490. |
[4] | 毕振威, 王文杰, 刘雅坤, 彭大新. 新的犬ANP32A的克隆及其在流感病毒跨物种感染中的作用[J]. 畜牧兽医学报, 2024, 55(2): 660-669. |
[5] | 杨芷翊, 王新凯, 史玉婷, 付思源, 张钰炘, 曹琛福, 贾伟新. 基于RT-RAA的禽流感H5亚型核酸CRISPR-Cas13a检测方法的建立[J]. 畜牧兽医学报, 2023, 54(9): 3803-3811. |
[6] | 陈杨, 孟林春, 郭梦娇, 张成成, 薄宗义, 楚电峰, 曹永忠, 吴艳涛, 张小荣. 检测鸡毒支原体抗体的间接ELISA方法和HI试验方法的建立及初步应用[J]. 畜牧兽医学报, 2023, 54(5): 2062-2072. |
[7] | 孙敏, 郝飞, 张纹纹, 李文良, 杨蕾蕾, 毛立, 程子龙, 刘茂军. IFN-α对山羊副流感病毒3型的抗病毒活性[J]. 畜牧兽医学报, 2023, 54(2): 736-743. |
[8] | 蒋盛强, 胡靖, 陈红英. H1N1亚型流感病毒感染A549细胞的环状RNA表达分析[J]. 畜牧兽医学报, 2023, 54(11): 4724-4734. |
[9] | 张傲, 谭斌, 刘可欣, 刘佳利, 张淑琴. 一株H1N1亚型猪流感病毒全基因组特征分析[J]. 畜牧兽医学报, 2023, 54(11): 4866-4871. |
[10] | 周勇, 李知新, 鲁宏伟, 孙燕, 李甜, 杜凡姝, 蒲娟. 我国H5和H7N9亚型高致病性禽流感的监测及疫情暴发分析[J]. 畜牧兽医学报, 2022, 53(9): 3093-3106. |
[11] | 陈子轩, 张楠, 胡群, 全柯吉, 秦涛, 陈素娟, 彭大新, 刘秀梵. 我国H9N2亚型禽流感病毒血凝素蛋白145和153位抗原位点变异分析[J]. 畜牧兽医学报, 2022, 53(4): 1165-1172. |
[12] | 崔明仙, 王星博, 黄彦铭, 卞希一, 冯梦珂, 颜焰, 董伟仁, 周继勇. 3株H3N2亚型禽流感病毒的基因组特征与演化分析[J]. 畜牧兽医学报, 2022, 53(11): 4116-4122. |
[13] | 孙华鹏, 崔新鑫, 潘亮奇, 许丰祥, 李硕, 吴梅花, 朱旭辉, 于亚南, 李明亮, 刘杨, 瞿孝云, 廖明, 孙海亮. 中国H9N2亚型禽流感病毒的流行现状[J]. 畜牧兽医学报, 2021, 52(5): 1218-1229. |
[14] | 李静云, 连朋敬, 白玉, 奚柳青, 张子卉, 牛小飞, 杨俊琦, 乔健. H9N2亚型禽流感病毒感染对小鼠肠道菌群的影响[J]. 畜牧兽医学报, 2021, 52(5): 1359-1368. |
[15] | 李丽, 唐国毅, 冯贺龙, 薛玉涵, 任助, 王国康, 贾妙妙, 商雨, 罗青平, 邵华斌, 温国元. 基于马赛克HA序列的H9亚型禽流感灭活疫苗的免疫效力分析[J]. 畜牧兽医学报, 2021, 52(12): 3569-3577. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||