畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (12): 5391-5397.doi: 10.11843/j.issn.0366-6964.2024.12.006
收稿日期:
2024-06-03
出版日期:
2024-12-23
发布日期:
2024-12-27
通讯作者:
陶金忠
E-mail:1571893591@qq.com;tao_jz@nxu.edu.cn
作者简介:
郑浩(2001-), 男, 河南济源人, 硕士, 主要从事动物遗传育种与繁殖研究, E-mail: 1571893591@qq.com
基金资助:
ZHENG Hao(), SUN Guohan, FU Yu, YANG Zhuo, TAO Jinzhong*(
)
Received:
2024-06-03
Online:
2024-12-23
Published:
2024-12-27
Contact:
TAO Jinzhong
E-mail:1571893591@qq.com;tao_jz@nxu.edu.cn
摘要:
奶牛自身免疫反应是影响早期妊娠胚胎丢失的重要因素之一。妊娠的建立和胎盘的发育依赖于免疫细胞(Tregs细胞、巨噬细胞、NK细胞等)和免疫调节因子的共同作用,来实现子宫对胚胎的容受性、胚胎植入以及妊娠母体的免疫耐受性。因此,深入了解奶牛妊娠早期各个阶段的免疫反应过程,对提高妊娠率至关重要。本文系统阐述了奶牛授精及妊娠早期的免疫调控机制,分析了母体促炎因子与抗炎因子之间的平衡及复杂的动态调节过程。这些研究为保证奶牛从受精、囊胚孵化、妊娠识别到胚胎着床等关键阶段的妊娠顺利提供理论支持,皆在推动奶牛繁育效率的提升。
中图分类号:
郑浩, 孙国瀚, 付予, 杨卓, 陶金忠. 奶牛早期妊娠免疫调控机制的研究进展[J]. 畜牧兽医学报, 2024, 55(12): 5391-5397.
ZHENG Hao, SUN Guohan, FU Yu, YANG Zhuo, TAO Jinzhong. Research Progress on Immune Regulatory Mechanisms of Early Pregnancy in Dairy Cows[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5391-5397.
1 |
DISKIN M G , SREENAN J M . Fertilization and embryonic mortality rates in beef heifers after artificial insemination[J]. J Reprod Fert, 1980, 59 (2): 463- 468.
doi: 10.1530/jrf.0.0590463 |
2 | SZELÉNYI Z , SZENCI O , BODÓ S , et al. Noninfectious causes of pregnancy loss at the late embryonic/early fetal stage in dairy cattle[J]. Animals (Basel), 2023, 13 (21): 3390. |
3 |
REESE S T , FRANCO G A , POOLE R K , et al. Pregnancy loss in beef cattle: a meta-analysis[J]. Anim Reprod Sci, 2020, 212, 106251.
doi: 10.1016/j.anireprosci.2019.106251 |
4 |
SADEGHI M , AZARI M , KAFI M , et al. Bovine salpingitis: histopathology, bacteriology, cytology and transcriptomic approaches and its impact on the oocyte competence[J]. Anim Reprod Sci, 2022, 242, 107004.
doi: 10.1016/j.anireprosci.2022.107004 |
5 |
FRITSCHE K L M , AHOLA J K , PINEDO P J , et al. Pregnancy risk in beef and dairy cows after supplementing semen with transforming growth factor beta-1 at the time of artificial insemination[J]. J Anim Sci, 2024, 102, skae169.
doi: 10.1093/jas/skae169 |
6 |
BROMFIELD J J . A role for seminal plasma in modulating pregnancy outcomes in domestic species[J]. Reproduction, 2016, 152 (6): R223- R232.
doi: 10.1530/REP-16-0313 |
7 |
MAREY M A , MA D X , YOSHINO H , et al. Sperm induce proinflammatory responses in the uterus and peripheral blood immune cells of artificially inseminated cows[J]. J Reprod Dev, 2023, 69 (2): 95- 102.
doi: 10.1262/jrd.2022-124 |
8 |
WRENZYCKI C . Interaction of sperm cells with the female reproductive tract in cattle: focus on neutrophil extracellular trap formation[J]. Anim Reprod Sci, 2022, 246, 107056.
doi: 10.1016/j.anireprosci.2022.107056 |
9 |
FICHTNER T , KOTARSKI F , HERMOSILLA C , et al. Semen extender and seminal plasma alter the extent of neutrophil extracellular traps (NET) formation in cattle[J]. Theriogenology, 2021, 160, 72- 80.
doi: 10.1016/j.theriogenology.2020.10.032 |
10 |
ELWEZA A E , EZZ M A , ACOSTA T J , et al. A proinflammatory response of bovine endometrial epithelial cells to active sperm in vitro[J]. Mol Reprod Dev, 2018, 85 (3): 215- 226.
doi: 10.1002/mrd.22955 |
11 |
IBRAHIM L A , RIZO J A , FONTES P L P , et al. Seminal plasma modulates expression of endometrial inflammatory meditators in the bovine[J]. Biol Reprod, 2019, 100 (3): 660- 671.
doi: 10.1093/biolre/ioy226 |
12 |
MAJEWSKI A C , TEKIN S , HANSEN P J . Local versus systemic control of numbers of endometrial T cells during pregnancy in sheep[J]. Immunology, 2001, 102 (3): 317- 322.
doi: 10.1046/j.1365-2567.2001.01182.x |
13 |
EZZ M A , MAREY M A , ELWEZA A E , et al. TLR2/4 signaling pathway mediates sperm-induced inflammation in bovine endometrial epithelial cells in vitro[J]. PLoS One, 2019, 14 (4): e0214516.
doi: 10.1371/journal.pone.0214516 |
14 |
NONGBUA T , GUO Y Z , NTALLARIS T , et al. Bull seminal plasma stimulates in vitro production of TGF-β, IL-6 and IL-8 from bovine endometrial epithelial cells, depending on dose and bull fertility[J]. J Reprod Immunol, 2020, 142, 103179.
doi: 10.1016/j.jri.2020.103179 |
15 |
HUNTER R H F . Components of oviduct physiology in eutherian mammals[J]. Biol Rev, 2012, 87 (1): 244- 255.
doi: 10.1111/j.1469-185X.2011.00196.x |
16 |
MAHÉ C , LAVIGNE R , COM E , et al. The sperm-interacting proteome in the bovine isthmus and ampulla during the periovulatory period[J]. J Anim Sci Biotechnol, 2023, 14 (1): 30.
doi: 10.1186/s40104-022-00811-2 |
17 |
YOUSEF M S , MAREY M A , HAMBRUCH N , et al. Sperm binding to oviduct epithelial cells enhances TGFB1 and IL10 expressions in epithelial cells as well as neutrophils in vitro: prostaglandin E2 as a main regulator of anti-inflammatory response in the bovine oviduct[J]. PLoS One, 2016, 11 (9): e0162309.
doi: 10.1371/journal.pone.0162309 |
18 |
ALOÉ S , WEBER F , BEHR B , et al. Modulatory effects of bovine seminal plasma on uterine inflammatory processes[J]. Reprod Domest Anim, 2012, 47 (1): 12- 19.
doi: 10.1111/j.1439-0531.2011.01792.x |
19 |
RECUERO S , SÁNCHEZ J M , MATEO-OTERO Y , et al. Mating to intact, but not vasectomized, males elicits changes in the endometrial transcriptome: insights from the bovine model[J]. Front Cell Dev Biol, 2020, 8, 547.
doi: 10.3389/fcell.2020.00547 |
20 |
SONG Z H , LI Z Y , LI D D , et al. Seminal plasma induces inflammation in the uterus through the γδ T/IL-17 pathway[J]. Sci Rep, 2016, 6 (1): 25118.
doi: 10.1038/srep25118 |
21 |
LIU B N , YAN J X , LI J J , et al. The role of BDNF, YBX1, CENPF, ZSCAN4, TEAD4, GLIS1 and USF1 in the activation of the embryonic genome in bovine embryos[J]. Int J Mol Sci, 2023, 24 (22): 16019.
doi: 10.3390/ijms242216019 |
22 |
RABAGLINO M B , SALILEW-WONDIM D , ZOLINI A , et al. Machine-learning methods applied to integrated transcriptomic data from bovine blastocysts and elongating conceptuses to identify genes predictive of embryonic competence[J]. FASEB J, 2023, 37 (3): e22809.
doi: 10.1096/fj.202201977R |
23 |
BERG D K , VAN LEEUWEN J , BEAUMONT S , et al. Embryo loss in cattle between Days 7 and 16 of pregnancy[J]. Theriogenology, 2010, 73 (2): 250- 260.
doi: 10.1016/j.theriogenology.2009.09.005 |
24 |
DISSANAYAKE K , NŌMM M , LÄTTEKIVI F , et al. Oviduct as a sensor of embryo quality: deciphering the extracellular vesicle (EV)-mediated embryo-maternal dialogue[J]. J Mol Med (Berl), 2021, 99 (5): 685- 697.
doi: 10.1007/s00109-021-02042-w |
25 | MAILLO V , GAORA P Ó , FORDE N , et al. Oviduct-embryo interactions in cattle: two-way traffic or a one-way street?[J]. Biol Reprod, 2015, 92 (6): 144. |
26 |
TALUKDER A K , RASHID M B , YOUSEF M S , et al. Oviduct epithelium induces interferon-tau in bovine Day-4 embryos, which generates an anti-inflammatory response in immune cells[J]. Sci Rep, 2018, 8 (1): 7850.
doi: 10.1038/s41598-018-26224-8 |
27 |
TALUKDER A K , YOUSEF M S , RASHID M B , et al. Bovine embryo induces an anti-inflammatory response in uterine epithelial cells and immune cells in vitro: possible involvement of interferon tau as an intermediator[J]. J Reprod Dev, 2017, 63 (4): 425- 434.
doi: 10.1262/jrd.2017-056 |
28 |
PASSARO C , TUTT D , BAGÉS-ARNAL S , et al. Global transcriptomic response of bovine endometrium to blastocyst-stage embryos[J]. Reproduction, 2019, 158 (3): 223- 235.
doi: 10.1530/REP-19-0064 |
29 |
FIORENZA M F , MAREY M A , RASHID M B , et al. Neutrophils recognize and amplify IFNT signals derived from day 7 bovine embryo for stimulation of ISGs expression in vitro: a possible implication for the early maternal recognition of pregnancy[J]. Biochem Biophys Res Commun, 2021, 553, 37- 43.
doi: 10.1016/j.bbrc.2021.03.037 |
30 |
FIORENZA M F , DOS SANTOS AMARAL C , DE ALMEIDA DA ANUNCIAÇÃO A R , et al. Possible impact of neutrophils on immune responses during early pregnancy in ruminants[J]. Anim Reprod, 2021, 18 (3): e20210048.
doi: 10.1590/1984-3143-ar2021-0048 |
31 | CASANO A B , BARILE V L , MENCHETTI L , et al. Interferon tau (IFNt) and interferon-stimulated genes (ISGs) expression in peripheral blood leukocytes and correlation with circulating pregnancy-associated glycoproteins (PAGs) during peri-implantation and early pregnancy in buffalo cows[J]. Animals (Basel), 2022, 12 (22): 3068. |
32 |
OTT T L . Immunological detection of pregnancy: evidence for systemic immune modulation during early pregnancy in ruminants[J]. Theriogenology, 2020, 150, 498- 503.
doi: 10.1016/j.theriogenology.2020.04.010 |
33 |
MEZERA M A , LI W L , WILTBANK M C . Pregnancy-induced changes in the transcriptome of the bovine corpus luteum during and after embryonic interferon-tau secretion[J]. Biol Reprod, 2021, 105 (1): 148- 163.
doi: 10.1093/biolre/ioab034 |
34 |
ENDRIß K J , MEYERHOLZ M M , FISCHBACH T , et al. In vitro effects of Type Ⅰ interferons (IFNτ and IFNα) on bovine hepatocytes cultured with or without Kupffer cells[J]. Reprod Fertil Dev, 2021, 33 (4): 305- 317.
doi: 10.1071/RD20278 |
35 | YANG L , LIU B L , YAN X X , et al. Expression of ISG15 in bone marrow during early pregnancy in ewes[J]. Kafkas Univ Vet Fak Derg, 2017, 23 (5): 767- 772. |
36 |
YANG L , WANG Q K , LIU Y , et al. Expression profiles of interferon-stimulated gene 15 and prostaglandin synthases in the ovine lymph nodes during early pregnancy[J]. Mol Reprod Dev, 2019, 86 (1): 100- 108.
doi: 10.1002/mrd.23085 |
37 |
YANG L , LIU Y , LV W , et al. Expression of interferon-stimulated gene 15-kDa protein, cyclooxygenase (COX) 1, COX-2, aldo-keto reductase family 1, member B1, and prostaglandin E synthase in the spleen during early pregnancy in sheep[J]. Anim Sci J, 2018, 89 (11): 1540- 1548.
doi: 10.1111/asj.13101 |
38 |
ZHANG L Y , XUE J , WANG Q K , et al. Changes in expression of ISG15, progesterone receptor and progesterone-induced blocking factor in ovine thymus during early pregnancy[J]. Theriogenology, 2018, 121, 153- 159.
doi: 10.1016/j.theriogenology.2018.08.018 |
39 |
BAI H , KAWAHARA M , TAKAHASHI M , et al. Recent progress of interferon-tau research and potential direction beyond pregnancy recognition[J]. J Reprod Dev, 2022, 68 (5): 299- 306.
doi: 10.1262/jrd.2022-061 |
40 | KOWALCZYK A , CZERNIAWSKA-PITKOWSKA E , WRZECIŃSKA M . The importance of interferon-tau in the diagnosis of pregnancy[J]. Biomed Res Int, 2021, 2021, 9915814. |
41 |
TALUKDER A K , RABAGLINO M B , BROWNE J A , et al. Dose- and time-dependent effects of interferon tau on bovine endometrial gene expression[J]. Theriogenology, 2023, 211, 1- 10.
doi: 10.1016/j.theriogenology.2023.07.033 |
42 |
CHANEY H L , GROSE L F , CHARPIGNY G , et al. Conceptus-induced, interferon tau-dependent gene expression in bovine endometrial epithelial and stromal cells[J]. Biol Reprod, 2021, 104 (3): 669- 683.
doi: 10.1093/biolre/ioaa226 |
43 | GRIFFITH O W , CHAVAN A R , PROTOPAPAS S , et al. Embryo implantation evolved from an ancestral inflammatory attachment reaction[J]. Proc Natl Acad Sci U S A, 2017, 114 (32): E6566- E6575. |
44 |
WANG J H , GUILLOMOT M , HUE I . Cellular organization of the trophoblastic epithelium in elongating conceptuses of ruminants[J]. C R Biol, 2009, 332 (11): 986- 997.
doi: 10.1016/j.crvi.2009.09.004 |
45 |
FUNESHIMA N , MIURA R , KATOH T , et al. Metabolomic profiles of plasma and uterine luminal fluids from healthy and repeat breeder Holstein cows[J]. BMC Vet Res, 2021, 17 (1): 54.
doi: 10.1186/s12917-021-02755-7 |
46 |
WIELEN A L V , KING G J . Intraepithelial lymphocytes in the bovine uterus during the oestrous cycle and early gestation[J]. J Reprod Fert, 1984, 70 (2): 457- 462.
doi: 10.1530/jrf.0.0700457 |
47 |
GROEBNER A E , SCHULKE K , SCHEFOLD J C , et al. Immunological mechanisms to establish embryo tolerance in early bovine pregnancy[J]. Reprod Fertil Dev, 2011, 23 (5): 619.
doi: 10.1071/RD10230 |
48 |
MOFFETT A , LOKE C . Immunology of placentation in eutherian mammals[J]. Nat Rev Immunol, 2006, 6 (8): 584- 594.
doi: 10.1038/nri1897 |
49 |
MOFFETT-KING A . Natural killer cells and pregnancy[J]. Nat Rev Immunol, 2002, 2 (9): 656- 663.
doi: 10.1038/nri886 |
50 | DA SILVA M I, OLI N, GAMBONINI F, et al. Effects of parity and early pregnancy on peripheral blood leukocytes in dairy cattle[J/OL]. J Dairy Sci, 2024, doi: 10.3168/jds.2024-25063. |
51 |
VASUDEVAN S , KAMAT M M , WALUSIMBI S S , et al. Effects of early pregnancy on uterine lymphocytes and endometrial expression of immune-regulatory molecules in dairy heifers[J]. Biol Reprod, 2017, 97 (1): 104- 118.
doi: 10.1093/biolre/iox061 |
52 |
KAMAT M M , VASUDEVAN S , MAALOUF S A , et al. Changes in myeloid lineage cells in the uterus and peripheral blood of dairy heifers during early pregnancy[J]. Biol Reprod, 2016, 95 (3): 68.
doi: 10.1095/biolreprod.116.141069 |
53 |
MARTINEZ F O , GORDON S , LOCATI M , et al. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression[J]. J Immunol, 2006, 177 (10): 7303- 7311.
doi: 10.4049/jimmunol.177.10.7303 |
54 |
MILLS C D , KINCAID K , ALT J M , et al. M-1/M-2 macrophages and the Th1/Th2 paradigm[J]. J Immunol, 2000, 164 (12): 6166- 6173.
doi: 10.4049/jimmunol.164.12.6166 |
55 | GOERDT S , POLITZ O , SCHLEDZEWSKI K , et al. Alternative versus classical activation of macrophages[J]. Pathobiology, 2000, 67 (5-6): 222- 226. |
[1] | 李相辰, 王林楠, 于正青, 张莉, 杨晨晨, 宋亮丽. 槲皮素抑制自噬恢复LTA诱导的奶牛乳腺上皮细胞紧密连接功能[J]. 畜牧兽医学报, 2024, 55(9): 3887-3896. |
[2] | 师睿, 李珊珊, 张海亮, 路海博, 闫青霞, 张毅, 陈绍祜, 王雅春. 中国荷斯坦牛繁殖性状的基因型与环境互作[J]. 畜牧兽医学报, 2024, 55(9): 3968-3977. |
[3] | 戴舒颖, 刘青, 李爱国, 余博, 陈洪波. 牛体外胚胎生产过程中培养液添加物研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3309-3320. |
[4] | 周佳丽, 丁宝隆, 马子明, 淡新刚, 赵洪喜. 奶牛子宫内膜炎与胃肠微生物相关性及益生菌作用的研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3321-3330. |
[5] | 王若薇, 许曦瑶, 汤晓娜, 王春梅, 赵锋. 结缔组织生长因子体外调控奶牛乳腺上皮细胞生长和泌乳分化[J]. 畜牧兽医学报, 2024, 55(8): 3446-3459. |
[6] | 郭子骄, 郑伟杰, 孙伟, 吴宝江, 包向男, 张琪, 贺巾锋, 包斯琴, 赵高平, 王子馨, 韩博, 李喜和, 孙东晓. 荷斯坦奶牛胚胎基因组遗传评估研究[J]. 畜牧兽医学报, 2024, 55(7): 2940-2950. |
[7] | 宋浩然, 冯肖艺, 张培培, 张航, 牛一凡, 余洲, 万鹏程, 崔凯, 赵学明. 奶牛卵泡颗粒细胞在卵泡发育中的作用机制[J]. 畜牧兽医学报, 2024, 55(6): 2313-2324. |
[8] | 张馨蕊, 付予, 马思佳, 杨卓, 陶金忠. 围产期奶牛生理调控与饲养管理[J]. 畜牧兽医学报, 2024, 55(6): 2325-2333. |
[9] | 张航, 张培培, 杨柏高, 冯肖艺, 牛一凡, 余洲, 曹建华, 万鹏程, 赵学明. IGF1、CoQ10、MT联合添加缓解热应激对牛IVF囊胚的影响[J]. 畜牧兽医学报, 2024, 55(6): 2474-2485. |
[10] | 费国庆, 宁致远, 赵泽芳, 刘艳秋, 刘腾飞, 李贤, 丛日华, 陈鸿, 陈树林. 妊娠期奶牛黄体细胞的分离鉴定及培养特性[J]. 畜牧兽医学报, 2024, 55(5): 2214-2225. |
[11] | 向辉, 桂林森, 杨迪, 魏士昊, 宫艳斌, 史远刚, 马云, 淡新刚. 奶牛同期发情-定时输精技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1412-1422. |
[12] | 沈文娟, 杨卓, 张馨蕊, 付予, 陶金忠. 奶牛生殖道微生物与繁殖及相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 924-932. |
[13] | 康方圆, 刘镇滔, 吴奎显, 倪晗, 钟凯, 李和平, 杨国宇, 韩立强. 脂噬对奶牛乳腺上皮细胞脂滴大小的调控研究[J]. 畜牧兽医学报, 2024, 55(3): 1095-1101. |
[14] | 张馨蕊, 付予, 杨卓, 沈文娟, 陶金忠. 奶牛早期妊娠诊断蛋白的研究[J]. 畜牧兽医学报, 2024, 55(2): 451-460. |
[15] | 张志飞, 唐雪颖, 闵力, 童雄, 陈卫东, 巨向红, 李大刚. 荷斯坦奶牛肝脏组织中与泌乳时期及繁殖力相关的基因共表达网络构建[J]. 畜牧兽医学报, 2024, 55(2): 528-539. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||