畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (10): 4377-4390.doi: 10.11843/j.issn.0366-6964.2024.10.012
马龙刚1(), 刘楠2, 尼玛群宗2, 王欣3, 陆健4, 毛华明5, 陈功6, 旦增欧珠2, 拉巴次仁2, 张楠2, 于福清4, 王雅春1,*(
)
收稿日期:
2024-04-07
出版日期:
2024-10-23
发布日期:
2024-11-04
通讯作者:
王雅春
E-mail:13369452684@163.com;wangyachun@cau.edu.cn
作者简介:
马龙刚(1996-), 男, 甘肃天水人, 硕士, 主要从事分子及数量遗传学研究, E-mail: 13369452684@163.com
基金资助:
Longgang MA1(), Nan LIU2, MA Qunzong NI2, Xin WANG3, Jian LU4, Huaming MAO5, Gong CHEN6, ZENG Ouzhu DAN2, BA Ciren LA2, Nan ZHANG2, Fuqing YU4, Yachun WANG1,*(
)
Received:
2024-04-07
Online:
2024-10-23
Published:
2024-11-04
Contact:
Yachun WANG
E-mail:13369452684@163.com;wangyachun@cau.edu.cn
摘要:
旨在探究西藏4个本地牛种的遗传结构和血统组成。本研究以22头高原荷斯坦牛与20头高原娟姗牛以及45头美国婆罗门牛、46头云南瘤牛和11头婆罗门牛为参照标准品种,待测样品为4个西藏本地品种的177头牛。通过Illumina GGP100K芯片杂交获取所有待测个体的SNPs数据,利用MEGA X和Admixture等软件对SNPs进行遗传结构与血统组成分析。结果表明,西藏牛较其他西藏本地牛种与高原荷斯坦牛和高原娟姗牛有更近的遗传关系;部分樟木牛和阿沛甲咂牛将西藏牛分为两个大群;日喀则驼峰牛与云南瘤牛遗传关系更近。在日喀则驼峰牛群体中,高原牛血统比例超过90%,在阿沛甲咂牛与西藏牛群体中,高原牛血统也超过了50%,仅在樟木牛群体中,高原牛血统比例为33.15%。其次,在樟木牛群体中,瘤牛血统占比高达18.27%,在阿沛甲咂牛、西藏牛与日喀则驼峰牛群体中,瘤牛血统较少(5%)。在阿沛甲咂牛群体内有高达35.94%的普通牛血统,在樟木牛群体内,奶牛血统高达48.58%。本研究对西藏本地牛种今后的杂交扩繁和横交固定提供了重要指导作用,也为阿沛甲咂牛与樟木牛两个濒危品种的资源保护和利用提供了理论参考。
中图分类号:
马龙刚, 刘楠, 尼玛群宗, 王欣, 陆健, 毛华明, 陈功, 旦增欧珠, 拉巴次仁, 张楠, 于福清, 王雅春. 基于SNP芯片信息分析西藏四个本地牛种的血统组成[J]. 畜牧兽医学报, 2024, 55(10): 4377-4390.
Longgang MA, Nan LIU, MA Qunzong NI, Xin WANG, Jian LU, Huaming MAO, Gong CHEN, ZENG Ouzhu DAN, BA Ciren LA, Nan ZHANG, Fuqing YU, Yachun WANG. Study on the Genetic Composition of Four Local Tibetan Cattle Breeds Based on SNP Chip Analysis[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4377-4390.
表 2
阿沛甲咂牛种血统组成统计"
样本编号 Number of samples | 高原牛血统 Plateau cattle bloodline | 奶牛血统HO&JS Dairy cattle bloodline | 瘤牛血统YL&PLM&APLM Bos indicus bloodline |
XZ_XZ130A1 | 0.591 808 | 0.337 569 | 0.070 623 |
XZ_XZ131A2 | 0.650 873 | 0.349 117 | 0.000 010 |
XZ_XZ132A3 | 0.635 391 | 0.278 572 | 0.086 037 |
XZ_XZ133A4 | 0.625 004 | 0.264 077 | 0.110 919 |
XZ_XZ134A5 | 0.599 911 | 0.297 645 | 0.102 445 |
XZ_XZ135A6 | 0.595 588 | 0.291 839 | 0.112 573 |
XZ_XZ136A7 | 0.559 761 | 0.440 229 | 0.000 010 |
XZ_XZ137A8 | 0.464 256 | 0.525 932 | 0.009 813 |
XZ_XZ138A9 | 0.505 470 | 0.494 520 | 0.000 010 |
XZ_XZ139A10 | 0.621 555 | 0.378 435 | 0.000 010 |
XZ_XZ140A11 | 0.629 386 | 0.325 753 | 0.044 861 |
XZ_XZ141A12 | 0.578 619 | 0.421 371 | 0.000 010 |
XZ_XZ142A13 | 0.568 924 | 0.431 066 | 0.000 010 |
XZ_XZ143A14 | 0.630 678 | 0.296 967 | 0.072 355 |
XZ_XZ144A15 | 0.615 776 | 0.376 662 | 0.007 563 |
XZ_XZ145A16 | 0.603 238 | 0.306 934 | 0.089 828 |
XZ_XZ146A17 | 0.615 065 | 0.384 925 | 0.000 010 |
XZ_XZ147A18 | 0.560 493 | 0.439 497 | 0.000 010 |
XZ_XZ148A19 | 0.591 752 | 0.383 408 | 0.024 840 |
XZ_XZ149A20 | 0.614 305 | 0.310 690 | 0.075 005 |
XZ_XZ150A21 | 0.464 667 | 0.535 323 | 0.000 010 |
XZ_XZ151A22 | 0.499 923 | 0.500 067 | 0.000 010 |
XZ_XZ152A23 | 0.580 664 | 0.406 541 | 0.012 794 |
XZ_XZ153A24 | 0.584 292 | 0.342 017 | 0.073 691 |
XZ_XZ154A25 | 0.584 141 | 0.415 849 | 0.000 010 |
XZ_XZ155A26 | 0.602 120 | 0.358 702 | 0.039 178 |
XZ_XZ156A27 | 0.612 105 | 0.387 885 | 0.000 010 |
XZ_XZ157A28 | 0.618 876 | 0.245 122 | 0.136 002 |
XZ_XZ158A29 | 0.610 937 | 0.309 870 | 0.079 193 |
XZ_XZ159A30 | 0.638 190 | 0.327 481 | 0.034 328 |
XZ_XZ140A11 | 0.591 614 | 0.371 062 | 0.037 325 |
XZ_XZ160A31 | 0.579 055 | 0.256 812 | 0.164 134 |
XZ_XZ161A32 | 0.604 542 | 0.334 637 | 0.060 821 |
XZ_XZ162A33 | 0.650 543 | 0.295 178 | 0.054 279 |
XZ_XZ163A34 | 0.580 946 | 0.286 235 | 0.132 819 |
XZ_XZ164A35 | 0.597 039 | 0.376 766 | 0.026 195 |
XZ_XZ165A36 | 0.585 410 | 0.326 809 | 0.087 781 |
XZ_XZ166A37 | 0.641 904 | 0.358 086 | 0.000 010 |
XZ_XZ167A38 | 0.622 421 | 0.245 618 | 0.131 961 |
XZ_XZ168A39 | 0.591 808 | 0.337 569 | 0.070 623 |
表 3
樟木牛种血统组成统计"
样本编号 Number of samples | 高原牛血统 Plateau cattle bloodline | 奶牛血统HO&JS Dairy cattle bloodline | 瘤牛血统YL&PLM&APLM Bos indicus bloodline |
XZ_XZ1Z1 | 0.374 161 | 0.538 873 | 0.086 966 |
XZ_XZ2Z2 | 0.557 966 | 0.417 791 | 0.024 243 |
XZ_XZ3Z3 | 0.268 150 | 0.594 257 | 0.137 593 |
XZ_XZ4Z4 | 0.461 712 | 0.538 278 | 0.000 010 |
XZ_XZ5Z5 | 0.349 663 | 0.591 801 | 0.058 537 |
XZ_XZ6Z6 | 0.191 895 | 0.543 071 | 0.265 034 |
XZ_XZ7Z7 | 0.433 616 | 0.566 374 | 0.000 010 |
XZ_XZ8Z8 | 0.101 796 | 0.421 195 | 0.477 009 |
XZ_ZMN01 | 0.198 054 | 0.432 891 | 0.369 055 |
XZ_ZMN02 | 0.397 534 | 0.586 953 | 0.015 512 |
XZ_ZMN03 | 0.426 174 | 0.573 816 | 0.000 010 |
XZ_ZMN04 | 0.473 77 | 0.526 220 | 0.000 010 |
XZ_ZMN07 | 0.323 625 | 0.603 089 | 0.073 286 |
XZ_ZMN09 | 0.084 154 | 0.668 482 | 0.247 364 |
XZ_ZMN13 | 0.417 285 | 0.569 806 | 0.012 909 |
XZ_ZMN14 | 0.297 964 | 0.607 186 | 0.094 849 |
XZ_ZMN15 | 0.429 561 | 0.271 353 | 0.299 086 |
XZ_ZMN16 | 0.319 767 | 0.175 883 | 0.504 349 |
XZ_ZMN17 | 0.306 641 | 0.129 275 | 0.564 084 |
XZ_ZMN18 | 0.216 045 | 0.359 326 | 0.424 629 |
表 4
西藏牛种血统组成统计"
样本编号 Number of samples | 高原牛血统 Plateau cattle bloodline | 奶牛血统HO&JS Dairy cattle bloodline | 瘤牛血统YL&PLM&APLM Bos indicus bloodline |
XZ_XZ10X1 | 0.622 872 | 0.308 491 | 0.068 637 |
XZ_XZ11X2 | 0.633 158 | 0.363 321 | 0.003 521 |
XZ_XZ12X3 | 0.646 045 | 0.327 586 | 0.026 369 |
XZ_XZ13X4 | 0.635 350 | 0.279 115 | 0.085 535 |
XZ_XZ14X5 | 0.638 679 | 0.325 750 | 0.035 571 |
XZ_XZ15X6 | 0.603 639 | 0.315 973 | 0.080 389 |
XZ_XZ16X7 | 0.609 889 | 0.233 567 | 0.156 543 |
XZ_XZ17X8 | 0.652 039 | 0.329 176 | 0.018 785 |
XZ_XZ18X9 | 0.635 890 | 0.307 220 | 0.056 890 |
XZ_XZ19X10 | 0.631 742 | 0.335 706 | 0.032 552 |
XZ_XZ20X11 | 0.611 872 | 0.388 118 | 0.000 010 |
XZ_XZ21X12 | 0.594 332 | 0.405 658 | 0.000 010 |
XZ_XZ22X13 | 0.572 545 | 0.427 445 | 0.000 010 |
XZ_XZ23X14 | 0.637 320 | 0.312 323 | 0.050 358 |
XZ_XZ24X15 | 0.630 524 | 0.305 918 | 0.063 558 |
XZ_XZ25X16 | 0.633 546 | 0.306 382 | 0.060 072 |
XZ_XZ26X17 | 0.613 711 | 0.288 301 | 0.097 987 |
XZ_XZ27X18 | 0.404 625 | 0.595 365 | 0.000 010 |
XZ_XZ28X19 | 0.642 301 | 0.337 137 | 0.020 562 |
XZ_XZ29X20 | 0.631 345 | 0.304 976 | 0.063 678 |
XZ_XZ30X21 | 0.630 991 | 0.320 005 | 0.049 004 |
XZ_XZ31X22 | 0.615 252 | 0.264 151 | 0.120 597 |
XZ_XZ32X23 | 0.611 422 | 0.304 258 | 0.084 320 |
XZ_XZ33X24 | 0.517 562 | 0.482 428 | 0.000 010 |
XZ_XZ34X25 | 0.459 532 | 0.513 612 | 0.026 856 |
XZ_XZ35X26 | 0.527 868 | 0.472 122 | 0.000 010 |
XZ_XZ36X27 | 0.623 479 | 0.306 017 | 0.070 504 |
XZ_XZ37X28 | 0.435 248 | 0.483 450 | 0.081 302 |
XZ_XZ38X29 | 0.616 798 | 0.383 192 | 0.000 010 |
XZ_XZ39X30 | 0.577 093 | 0.422 897 | 0.000 010 |
XZ_XZ40XD1 | 0.325 353 | 0.674 637 | 0.000 010 |
XZ_XZ41XD2 | 0.600 257 | 0.399 733 | 0.000 010 |
XZ_XZ42XD3 | 0.430 266 | 0.569 724 | 0.000 010 |
XZ_XZ43XD4 | 0.405 176 | 0.594 814 | 0.000 010 |
XZ_XZ44XD5 | 0.374 860 | 0.625 130 | 0.000 010 |
XZ_XZ45XD6 | 0.385 590 | 0.614 400 | 0.000 010 |
XZ_XZ46X40 | 0.432 893 | 0.567 097 | 0.000 010 |
XZ_XZ47X41 | 0.625 818 | 0.279 362 | 0.094 819 |
XZ_XZ48X42 | 0.622 711 | 0.377 279 | 0.000 010 |
XZ_XZ49X43 | 0.391 394 | 0.608 596 | 0.000 010 |
XZ_XZ50X44 | 0.283 703 | 0.716 287 | 0.000 010 |
XZ_XZ51X45 | 0.383 231 | 0.616 759 | 0.000 010 |
XZ_XZ52X46 | 0.359 128 | 0.640 862 | 0.000 010 |
XZ_XZ53X47 | 0.610 206 | 0.389 784 | 0.000 010 |
XZ_XZ54X48 | 0.603 838 | 0.396 152 | 0.000 010 |
XZ_XZ55X49 | 0.587 840 | 0.337 553 | 0.074 607 |
XZ_XZ56X50 | 0.466 024 | 0.533 966 | 0.000 010 |
XZ_XZ57X51 | 0.616 003 | 0.327 261 | 0.056 736 |
XZ_XZ58X52 | 0.638 859 | 0.331 216 | 0.029 925 |
XZ_XZ59X53 | 0.610 792 | 0.345 997 | 0.043 211 |
XZ_XZ60X54 | 0.577 660 | 0.422 330 | 0.000 010 |
XZ_XZ61X55 | 0.433 269 | 0.566 721 | 0.000 010 |
XZ_XZ62X56 | 0.465 059 | 0.534 931 | 0.000 010 |
XZ_XZ63X57 | 0.414 089 | 0.585 901 | 0.000 010 |
XZ_XZ64X58 | 0.423 080 | 0.576 910 | 0.000 010 |
XZ_XZ65X59 | 0.445 328 | 0.554 662 | 0.000 010 |
XZ_XZ66X60 | 0.441 022 | 0.558 968 | 0.000 010 |
XZ_XZ67X61 | 0.355 537 | 0.644 453 | 0.000 010 |
XZ_XZ68X62 | 0.430 559 | 0.569 431 | 0.000 010 |
XZ_XZ69X63 | 0.428 978 | 0.571 012 | 0.000 010 |
XZ_XZ70X64 | 0.514 546 | 0.485 444 | 0.000 010 |
表 5
日喀则驼峰牛种血统组成统计"
样本编号 Number of samples | 高原牛血统 Plateau cattle bloodline | 奶牛血统HO&JS Dairy cattle bloodline | 瘤牛血统YL&PLM&APLM Bos indicus bloodline |
XZ_XZ72T2 | 0.999 980 | 0.000 010 | 0.000 010 |
XZ_XZ73T3 | 0.922 479 | 0.057 603 | 0.019 918 |
XZ_XZ74T4 | 0.831 484 | 0.120 605 | 0.047 911 |
XZ_XZ75T5 | 0.680 514 | 0.181 640 | 0.137 846 |
XZ_XZ76T6 | 0.798 369 | 0.152 918 | 0.048 714 |
XZ_XZ77T7 | 0.976 787 | 0.023 203 | 0.000 010 |
XZ_XZ78T8 | 0.999 980 | 0.000 010 | 0.000 010 |
XZ_XZ79T9 | 0.807 248 | 0.139 684 | 0.053 068 |
XZ_XZ80T10 | 0.999 980 | 0.000 010 | 0.000 010 |
XZ_XZ81T11 | 0.999 980 | 0.000 010 | 0.000 010 |
XZ_XZ82T12 | 0.999 977 | 0.000 013 | 0.000 010 |
XZ_XZ83T13 | 0.882 359 | 0.117 631 | 0.000 010 |
XZ_XZ84T14 | 0.884 968 | 0.104 265 | 0.010 767 |
XZ_XZ85T15 | 0.963 772 | 0.036 218 | 0.000 010 |
XZ_XZ86T16 | 0.863 891 | 0.073 225 | 0.062 884 |
XZ_XZ87T17 | 0.999 980 | 0.000 010 | 0.000 010 |
XZ_XZ89T19 | 0.852 990 | 0.127 367 | 0.019 643 |
XZ_XZ90T20 | 0.883 743 | 0.102 123 | 0.014 133 |
XZ_XZ91T21 | 0.953 611 | 0.046 379 | 0.000 010 |
XZ_XZ92T22 | 0.620 491 | 0.232 930 | 0.146 578 |
XZ_XZ93T23 | 0.915 620 | 0.084 370 | 0.000 010 |
XZ_XZ94T24 | 0.930 951 | 0.069 039 | 0.000 010 |
XZ_XZ95T26 | 0.921 803 | 0.078 187 | 0.000 010 |
XZ_XZ96T28 | 0.999 980 | 0.000 010 | 0.000 010 |
XZ_XZ97T29 | 0.926 863 | 0.073 127 | 0.000 010 |
XZ_XZ98T30 | 0.908 525 | 0.091 465 | 0.000 010 |
XZ_XZ99T31 | 0.999 980 | 0.000 010 | 0.000 010 |
XZ_XZ100T32 | 0.594 266 | 0.286 145 | 0.119 589 |
XZ_XZ101T33 | 0.969 662 | 0.030 328 | 0.000 010 |
XZ_XZ102T34 | 0.952 904 | 0.025 523 | 0.021 572 |
XZ_XZ103T35 | 0.856 997 | 0.142 993 | 0.000 010 |
XZ_XZ104T36 | 0.979 404 | 0.020 586 | 0.000 010 |
XZ_XZ105T37 | 0.941 707 | 0.058 283 | 0.000 010 |
XZ_XZ106T38 | 0.999 980 | 0.000 010 | 0.000 010 |
XZ_XZ107T39 | 0.999 980 | 0.000 010 | 0.000 010 |
XZ_XZ108T40 | 0.874 609 | 0.125 381 | 0.000 010 |
XZ_XZ109T41 | 0.822 893 | 0.177 097 | 0.000 010 |
XZ_XZ110T42 | 0.993 389 | 0.006 601 | 0.000 010 |
XZ_XZ111T43 | 0.962 979 | 0.037 011 | 0.000 010 |
XZ_XZ112T44 | 0.953 058 | 0.046 932 | 0.000 010 |
XZ_XZ113T45 | 0.928 898 | 0.071 092 | 0.000 010 |
XZ_XZ114T46 | 0.807 205 | 0.176 474 | 0.016 321 |
XZ_XZ115T47 | 0.916 653 | 0.081 226 | 0.002 121 |
XZ_XZ116T48 | 0.999 980 | 0.000 010 | 0.000 010 |
XZ_XZ117T49 | 0.880 538 | 0.072 113 | 0.047 349 |
XZ_XZ118T51 | 0.900 973 | 0.099 017 | 0.000 010 |
XZ_XZ119T52 | 0.927 356 | 0.072 634 | 0.000 010 |
XZ_XZ120T53 | 0.838 603 | 0.086 573 | 0.074 824 |
XZ_XZ121T54 | 0.794 682 | 0.205 308 | 0.000 010 |
XZ_XZ122T55 | 0.922 265 | 0.061 969 | 0.015 767 |
XZ_XZ123T56 | 0.972 426 | 0.027 564 | 0.000 010 |
XZ_XZ124T57 | 0.646 169 | 0.224 953 | 0.128 878 |
XZ_XZ125T59 | 0.999 980 | 0.000 010 | 0.000 010 |
XZ_XZ126T60 | 0.956 114 | 0.043 876 | 0.000 010 |
XZ_XZ127T61 | 0.818 665 | 0.103 817 | 0.077 518 |
XZ_XZ128T62 | 0.921 174 | 0.078 816 | 0.000 010 |
XZ_XZ129T63 | 0.943 591 | 0.056 399 | 0.000 010 |
表 6
西藏本地牛种血统统计分析"
品种 Breed | 血统 Bloodline | 均值±标准差 Mean±SD | 变异系数% Coefficient of variation |
阿沛甲咂牛 | 高原牛血统 | 0.592 493±0.043 725 | 7.38 |
Apeijiaza cattle | 奶牛血统 | 0.359 366±0.073 970 | 20.58 |
瘤牛血统 | 0.048 141±0.048 222 | 100.17 | |
樟木牛Zhangmu cattle | 高原牛血统 | 0.331 480±0.128 460 | 37.06 |
奶牛血统 | 0.485 800±0.145 540 | 29.96 | |
瘤牛血统 | 0.182 730±0.189 080 | 103.47 | |
西藏牛Tibet cattle | 高原牛血统 | 0.534 094±0.105 343 | 19.72 |
奶牛血统 | 0.438 804±0.128 865 | 29.37 | |
瘤牛血统 | 0.027 102±0.037 541 | 138.52 | |
日喀则驼峰牛 | 高原牛血统 | 0.905 323±0.096 382 | 10.65 |
Shigatse Humped cattle | 奶牛血统 | 0.075 979±0.067 516 | 88.86 |
瘤牛血统 | 0.018 698±0.037 191 | 198.91 |
1 | 张核真, 路红亚, 洪健昌, 等. 藏西北地区气候变化及其对草地畜牧业的影响[J]. 干旱区研究, 2013, 30 (2): 308- 314. |
ZHANG H Z , LU H Y , HONG J C , et al. Climate change and its effect on steppe animal husbandry in Northwest Tibet[J]. Arid Zone Research, 2013, 30 (2): 308- 314. | |
2 | 邓兵, 晋美旺杰, 任增帮, 等. 基于RAD-seq简化基因组测序的西藏黄牛遗传多样性研究[J]. 江苏农业科学, 2021, 49 (16): 153- 157. |
DENG B , JINMEI W J , REN Z B , et al. Study on genetic diversity of Tibetan cattle based on RAD-seq simplified genome sequencing[J]. Jiangsu Agricultural Sciences, 2021, 49 (16): 153- 157. | |
3 | 郑玉才. 浅析西藏山南市地方土种高原黄牛资源保护[J]. 畜禽业, 2019, 30 (10): 51. |
ZHENG Y C . Analysis on the protection of local soil species plateau yellow cattle resources in Shannan of Tibetan[J]. Livestock and Poultry Industry, 2019, 30 (10): 51. | |
4 | 唐建华, 陈晓英, 宋天增, 等. 西藏黄牛种质资源保护与利用研究[J]. 中国牛业科学, 2016, 42 (3): 48- 51. |
TANG J H , CHEN X Y , SONG T Z , et al. The research on conservation and utility of Tibet Cattle germplasm resources[J]. China Cattle Science, 2016, 42 (3): 48- 51. | |
5 | 黄兴, 柴志欣, 信金伟, 等. 西藏牛亚科部分群体线粒体DNA遗传多样性研究[J]. 西南民族大学学报(自然科学版), 2019, 45 (2): 117- 124. |
HUANG X , CHAI Z X , XIN J W , et al. Genetic diversity of mitochondrial DNA of some subfamilies of cattle in Tibet[J]. Journal of Southwest Minzu University (Natural Science Edition), 2019, 45 (2): 117- 124. | |
6 | 张桂香, 郑友民, 王志刚, 等. 我国部分黄牛品种线粒体D-loop区遗传多样性与起源分化[J]. 遗传, 2009, 31 (2): 160- 168. |
ZHANG G X , ZHENG Y M , WANG Z G , et al. Genetic diversity and origin of mitochondria DNA D-loop region of some Chinese indigenous cattle breeds[J]. HEREDITAS(Beijing), 2009, 31 (2): 160- 168. | |
7 | 刘锡武, 刘鹏, 高玉君. 西藏日喀则市黄牛改良现状与对策[J]. 中国牛业科学, 2009, 35 (4): 63- 65. |
LIU X W , LIU P , GAO Y J . Current situation and measures to improve yellow cattle in Shigatse of Tibet[J]. Chinese Cattle Science, 2009, 35 (4): 63- 65. | |
8 | 黄上真, 马龙刚, 娄文琦, 等. 高原地区奶牛血液指标的影响因素分析[J]. 畜牧兽医学报, 2023, 54 (5): 1964- 1978. |
HUANG S Z , MA L G , LOU W Q , et al. Analysis of influencing factors on blood indicators of dairy cows at high-altitude area[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (5): 1964- 1978. | |
9 |
SEMPÉRÉ G , MOAZAMI-GOUDARZI K , EGGEN A , et al. WIDDE: a Web-Interfaced next generation database for genetic diversity exploration, with a first application in cattle[J]. BMC Genomics, 2015, 16, 940.
doi: 10.1186/s12864-015-2181-1 |
10 |
PURCELL S , NEALE B , TODD-BROWN K , et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81 (3): 559- 575.
doi: 10.1086/519795 |
11 |
KUMAR S , STECHER G , LI M , et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35 (6): 1547- 1549.
doi: 10.1093/molbev/msy096 |
12 |
ZHANG W , SUN Z R . Random local neighbor joining: a new method for reconstructing phylogenetic trees[J]. Mol Phylogenet Evol, 2008, 47 (1): 117- 128.
doi: 10.1016/j.ympev.2008.01.019 |
13 |
TAMURA K , NEI M , KUMAR S . Prospects for inferring very large phylogenies by using the neighbor-joining method[J]. Proc Natl Acad Sci U S A, 2004, 101 (30): 11030- 11035.
doi: 10.1073/pnas.0404206101 |
14 |
ALEXANDER D H , NOVEMBRE J , LANGE K . Fast model-based estimation of ancestry in unrelated individuals[J]. Genome Res, 2009, 19 (9): 1655- 1664.
doi: 10.1101/gr.094052.109 |
15 |
KONG Z W , ZHOU C S , LI B , et al. Integrative plasma proteomic and microRNA analysis of Jersey cattle in response to high-altitude hypoxia[J]. J Dairy Sci, 2019, 102 (5): 4606- 4618.
doi: 10.3168/jds.2018-15515 |
16 | 张剑搏, 丁学智, AnumA A, 等. 高原土著动物适应性进化的研究进展[J]. 畜牧兽医学报, 2019, 50 (9): 1723- 1736. |
ZHANG J B , DING X Z , AHMAD A A , et al. Advances in research on adaptive evolution of native animals of tibetan plateau[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (9): 1723- 1736. | |
17 |
CHEN N B , XIA X T , HANIF Q , et al. Global genetic diversity, introgression, and evolutionary adaptation of indicine cattle revealed by whole genome sequencing[J]. Nat Commun, 2023, 14 (1): 7803.
doi: 10.1038/s41467-023-43626-z |
18 | 贾功雪, 丁路明, 徐尚荣, 等. 青藏高原牦牛遗传资源保护和利用: 问题与展望[J]. 生态学报, 2020, 40 (18): 6314- 6323. |
JIA G X , DING L M , XU S R , et al. Conservation and utilization of yak genetic resources in Qinghai-Tibet plateau: problems and perspectives[J]. Acta Ecologica Sinica, 2020, 40 (18): 6314- 6323. | |
19 | 马志杰. 牦牛基因组和转录组研究进展[J]. 中国农业大学学报, 2019, 24 (7): 79- 86. |
MA Z J . Research progress of the genome and transcriptome of yak[J]. Journal of China Agricultural University, 2019, 24 (7): 79- 86. | |
20 | QIU Q , ZHANG G J , MA T , et al. The yak genome and adaptation to life at high altitude[J]. Nat Genet, 2012, 44 (8): 946- 949. |
21 | ZHANG Y R , HU Y , WANG X G , et al. Population structure, and selection signatures underlying high-altitude adaptation inferred from genome-wide copy number variations in Chinese indigenous cattle[J]. Front Genet, 2020, 10, 1404. |
22 | 干珠扎布, 胡国铮, 高清竹, 等. 藏北高原草地生态治理与畜牧业协同发展模式研究[J]. 中国工程科学, 2019, 21 (5): 93- 98. |
HASBAGAN G , HU G Z , GAO Q Z , et al. Synergetic mode for grassland ecological management and animal husbandry development in Northern Tibet Plateau[J]. Strategic Study of CAE, 2019, 21 (5): 93- 98. | |
23 | 王莉, 旦增洛桑, 马金英, 等. 娟姗牛杂交改良西藏本地黄牛的效果调查[J]. 中国奶牛, 2015, (2): 13- 15. |
WANG L , DANZENG L S , MA J Y , et al. Hybrid improvement of Jersey cattle crossbreeding with Tibet local yellow cattle[J]. China Dairy Cattle, 2015, (2): 13- 15. | |
24 | 张国庆, 郭妮妮, 胡雄贵, 等. 山南市黄牛改良横交固定研究及推广应用[J]. 现代农业科技, 2016, (24): 248. |
ZHANG G Q , GUO N N , HU X G , et al. Study and application of improved crossbreed fixation of cattle in Shannan City[J]. Modern Agricultural Science and Technology, 2016, (24): 248. | |
25 | 杨章平, 常洪, 李相运, 等. 西藏南部高寒地区瘤牛群体形态及生态特征研究[J]. 扬州大学学报: 农业与生命科学版, 2002, 23 (1): 23- 26. |
YANG Z P , CHANG H , LI X Y , et al. Study on morphology and ecology of the indicus populations from cooled region of South Tibet[J]. Journal of Yangzhou University: Agricultural and Life Science Edition, 2002, 23 (1): 23- 26. | |
26 | 刘诗平. 绝不让雪域高原濒危种质资源灭失——西藏阿沛甲咂牛与樟木牛抢救性保种全面展开[J]. 中国畜牧业, 2022, (24): 10- 11. |
LIU S P . Never let the endangered germplasm resources be lost in the snowy plateau-the rescue and conservation of Jiaza cattle and Zhangmu cattle in Tibet are carried out in an all-round way[J]. China Animal Industry, 2022, (24): 10- 11. | |
27 | 卜李那, 彭业博, 张春媛, 等. 基于祖源分析的猪遗传成分鉴定[J]. 中国畜牧兽医, 2020, 47 (2): 544- 553. |
BU L N , PENG Y B , ZHANG C Y , et al. Ancestry analysis of genetic components of pigs[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47 (2): 544- 553. | |
28 | 钟海安, 张健, 旦增洛桑, 等. 基于基因芯片分析西藏山南杂交藏黄牛血统组成[J]. 中国畜牧杂志, 2023, 59 (11): 166-169, 174. |
ZHONG H A , ZHANG J , DANZENG L S , et al. Analysis of pedigree composition of Shannan hybrid Tibetan yellow cattle in Tibet based on gene chip[J]. Chinese Journal of Animal Science, 2023, 59 (11): 166-169, 174. | |
29 | 宋科林, 闫尊强, 王鹏飞, 等. 基于SNP芯片分析徽县青泥黑猪遗传多样性和遗传结构[J]. 畜牧兽医学报, 2024, 55 (3): 995- 1006. |
SONG K L , YAN Z Q , WANG P F , et al. Analysis on genetic diversity and genetic structure based on SNP chips of Huixian Qingni black pig[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (3): 995- 1006. | |
30 | QUAN J Q , LI Y Q , YANG Y H , et al. Population genetic diversity and genetic evaluation models reveal the maternal genetic structure and conservation priority characteristics of indigenous cattle in China[J]. Global Ecol Conserv, 2021, 32, e1903. |
31 | EDEA Z , BHUIYAN M S A , DESSIE T , et al. Genome-wide genetic diversity, population structure and admixture analysis in African and Asian cattle breeds[J]. Animal, 2015, 9 (2): 218- 226. |
32 | 马浩然, 张路培, 金生云, 等. 利用高密度SNP芯片评估中国地方肉牛品种基因组亲缘关系[J]. 畜牧兽医学报, 2023, 54 (10): 4174- 4185. |
MA H R , ZHANG L P , JIN S Y , et al. Assessment of the genomic relationships for chinese indigenous beef cattle using high-density SNP chip[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (10): 4174- 4185. | |
33 | LYU Y , WANG F W , CHENG H J , et al. Recent selection and introgression facilitated high-altitude adaptation in cattle[J]. Sci Bull (Beijing), 2024, S2095-9273(24)00380-3. |
34 | CHEN N B , ZHANG Z W , HOU J W , et al. Evidence for early domestic yak, taurine cattle, and their hybrids on the Tibetan Plateau[J]. Sci Adv, 2023, 9 (50): eadi6857. |
35 | CHEN N B , CAI Y D , CHEN Q M , et al. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia[J]. Nat Commun, 2018, 9 (1): 2337. |
36 | GAO X , WANG S , WANG Y F , et al. Long read genome assemblies complemented by single cell RNA-sequencing reveal genetic and cellular mechanisms underlying the adaptive evolution of yak[J]. Nat Commun, 2022, 13 (1): 4887. |
37 | 增旦旺姆. 西藏地区草地畜牧业发展现状与重点任务[J]. 畜禽业, 2022, 33 (5): 82-83, 86. |
ZENGDAN W M . Development status and key tasks of grassland animal husbandry in Tibet[J]. Livestock and Poultry Industry, 2022, 33 (5): 82-83, 86. | |
38 | 阿旺泽珍. 西藏畜牧兽医工作中动物检疫的思考[J]. 畜禽业, 2022, 33 (1): 77- 78. |
AWANG Z Z . Current situation and key tasks of grassland animal husbandry in Tibet: reflections on animal quarantine in animal husbandry and veterinary work in Tibet[J]. Livestock and Poultry Industry, 2022, 33 (1): 77- 78. | |
39 | 张春来, 马伟元. 西藏畜牧兽医工作中动物检疫现状浅析[J]. 吉林畜牧兽医, 2021, 42 (4): 128. |
ZHANG C L , MA W Y . Analysis of animal quarantine status in animal husbandry and veterinary work in Tibet[J]. Jilin Animal Husbandry and Veterinary, 2021, 42 (4): 128. | |
40 | 梁伟岸, 王平. 农业强国视域下中国畜牧业循环发展路径探究[J/OL]. 饲料研究, 2024(12): 193-196[2024-07-18]. https://doi.org/10.13557/j.cnki.issn1002-2813.2024.12.034. |
LIANG W A, WANG P. Exploration of circular development path of Chinese livestock industry from the perspective of an agricultural powerhouse[J/OL]. Feed Research, 2024(12): 193-196[2024-07-18]. https://doi.org/10.13557/j.cnki.issn1002-2813.2024.12.034. (in Chinese) | |
41 | 邹骅, 刘沈. 畜牧业数智化发展的现状及对策建议[J]. 畜牧产业, 2024, (6): 59- 63. |
ZOU H , LIU S . Current situation and countermeasures of the development of numerical intelligence in animal husbandry[J]. Animal Agriculture, 2024, (6): 59- 63. |
[1] | 王婷, 张元庆, 闫益波, 上官明军, 郭宏宇, 王志武. “特藏寒羊”群体遗传结构分析与选择信号的对比分析[J]. 畜牧兽医学报, 2024, 55(7): 2913-2926. |
[2] | 屠芸, 曾雅楠, 张蒸豪, 洪瑞, 王震, 吴平, 周泽洋, 叶艺茹, 杜亚楠, 左福元, 张龚炜. 保种场涪陵水牛及西南地区水牛品种间遗传结构与ROH分析[J]. 畜牧兽医学报, 2024, 55(5): 1989-1998. |
[3] | 宋科林, 闫尊强, 王鹏飞, 程文昊, 李杰, 白雅琴, 孙国虎, 滚双宝. 基于SNP芯片分析徽县青泥黑猪遗传多样性和遗传结构[J]. 畜牧兽医学报, 2024, 55(3): 995-1006. |
[4] | 王静琳, 刘阳光, 徐启隆, 陈朔, 邓在双, 程诗雨, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 皖岳黑猪基因组遗传变异分析及特征SNPs挖掘[J]. 畜牧兽医学报, 2023, 54(7): 2783-2793. |
[5] | 张任豹, 周东辉, 周李生, 高霄霄, 柳楠, 贺建宁. 基于70 K SNP芯片分析济宁青山羊保种群体的遗传结构[J]. 畜牧兽医学报, 2023, 54(7): 2836-2847. |
[6] | 陶璇, 杨雪梅, 梁艳, 刘一辉, 汪勇, 孔繁晶, 雷云峰, 杨跃奎, 王言, 安瑞, 杨坤, 吕学斌, 何志平, 顾以韧. 基于SNP芯片的丫杈猪保种群体遗传结构研究[J]. 畜牧兽医学报, 2023, 54(6): 2308-2319. |
[7] | 龙熙, 陈力, 吴平先, 张廷焕, 潘红梅, 张亮, 王金勇, 郭宗义, 柴捷. 合川黑猪保种群遗传结构及选择信号分析[J]. 畜牧兽医学报, 2023, 54(5): 1854-1867. |
[8] | 李隐侠, 牙生江·那斯尔, 赛里克·都曼, 钱勇, 曹少先, 王伟列, 孟春花, 张俊, 张建丽. SNP芯片评估柯尔克孜羊群体遗传多样性和遗传结构[J]. 畜牧兽医学报, 2023, 54(2): 572-583. |
[9] | 齐丽娜, 陆雪林, 杨凯旋, 周瑾, 李先玉, 刘珂, 张文刚, 顾欣, 章伟建. 基于SNP芯片分析新浦东鸡的遗传多样性和遗传结构[J]. 畜牧兽医学报, 2023, 54(12): 4962-4971. |
[10] | 武艳平, 魏岳, 康昭风, 谢明贵, 谢金防. 基于全基因组SNP分析8个地方鸡品种的遗传多样性[J]. 畜牧兽医学报, 2022, 53(2): 646-653. |
[11] | 牛晓艳, 曹亮, 明世清, 李燕平, 詹海杰, 姜志广, 卫顺生, 张元庆. 广灵驴分子系谱的建立及群体遗传结构分析[J]. 畜牧兽医学报, 2022, 53(2): 391-401. |
[12] | 路玉洁, 莫家远, 綦文晶, 朱思燃, 杨丽丽, 刘巧玲, 卜亚歌, 兰干球, 梁晶. 几个中国地方猪群体遗传结构和产仔数性状选择信号分析[J]. 畜牧兽医学报, 2022, 53(2): 360-369. |
[13] | 米热姑丽·麦麦提, 周世玉, 刘鹏, 孟阳, 聂文悦, 滕培晨, 单文娟. 基于线粒体基因的新疆托氏兔遗传多样性和种群遗传结构评价[J]. 畜牧兽医学报, 2022, 53(1): 112-121. |
[14] | 王宏浩, 任小康, 张毅, 高会江, 车雷杰, 王曦. 基因芯片技术在晋南牛种公牛选育中的应用[J]. 畜牧兽医学报, 2021, 52(10): 2803-2813. |
[15] | 邓磊, 柴志欣, 王嘉博, 王会, 王吉坤, 武志娟, 信金伟, 钟金城, 姬秋梅. 西藏牛和三江牛大脑组织中低氧适应相关circRNAs的比较分析[J]. 畜牧兽医学报, 2020, 51(3): 490-504. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||