[1] |
DUFFIELD T. Subclinical ketosis in lactating dairy cattle[J]. Vet Clin North Am Food Anim Pract, 2000, 16(2):231-253.
|
[2] |
GORDON J L, LEBLANC S J, DUFFIELD T F. Ketosis treatment in lactating dairy cattle[J]. Vet Clin North Am Food Anim Pract, 2013, 29(2):433-445.
|
[3] |
靳军阳, 闫 磊, 薛永康, 等. 围产期奶牛的能量负平衡及能量代谢障碍病防治[J]. 湖北畜牧兽医, 2018, 39(12):22-27.JIN J Y, YAN L, XUE Y K, et al. Negative energy balance and prevention of energy metabolism disorders in periparturient dairy cows[J]. Hubei Journal of Animal and Veterinary Sciences, 2018, 39(12):22-27. (in Chinese)
|
[4] |
吴 怡, 敖日格乐, 王纯洁, 等. 反刍动物围产期能量负平衡的调控研究进展[J]. 饲料研究, 2022, 45(2):136-140.WU Y, AO R G, WANG C J, et al. Research progress on regulation of negative energy balance in ruminants during perinatal period[J]. Feed Research, 2022, 45(2):136-140. (in Chinese)
|
[5] |
CAHILL G F. Fuel metabolism in starvation[J]. Annu Rev Nutr, 2006, 26:1-22.
|
[6] |
PUCHALSKA P, CRAWFORD P A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics[J]. Cell Metab, 2017, 25(2):262-284.
|
[7] |
OVERTON T R, MCART J A A, NYDAM D V. A 100-year review:metabolic health indicators and management of dairy cattle[J]. J Dairy Sci, 2017, 100(12):10398-10417.
|
[8] |
NEWMAN J C, VERDIN E. Ketone bodies as signaling metabolites[J]. Trends Endocrinol Metab, 2014, 25(1):42-52.
|
[9] |
RAHMAN M, MUHAMMAD S, KHAN M A, et al. The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages[J]. Nat Commun, 2014, 5:3944.
|
[10] |
YOUM Y H, NGUYEN K Y, GRANT R W, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease[J]. Nat Med, 2015, 21(3):263-269.
|
[11] |
XIE Z Y, ZHANG D, CHUNG D, et al. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation[J]. Mol Cell, 2016, 62(2):194-206.
|
[12] |
RUI L Y. Energy metabolism in the liver[J]. Compr Physiol, 2014, 4(1):177-197.
|
[13] |
ZHAO S, ZHANG X R, LI H T. Beyond histone acetylation-writing and erasing histone acylations[J]. Curr Opin Struct Biol, 2018, 53:169-177.
|
[14] |
MURPHY P, LIKHODII S, NYLEN K, et al. The antidepressant properties of the ketogenic diet[J]. Biol Psychiatry, 2004, 56(12):981-983.
|
[15] |
CHEN L, MIAO Z G, XU X S. β-Hydroxybutyrate alleviates depressive behaviors in mice possibly by increasing the histone3-lysine9-β-hydroxybutyrylation[J]. Biochem Biophys Res Commun, 2017, 490(2):117-122.
|
[16] |
LUO W G, YU Y J, WANG H, et al. Up-regulation of MMP-2 by histone H3K9 β-hydroxybutyrylation to antagonize glomerulosclerosis in diabetic rat[J]. Acta Diabetol, 2020, 57(12):1501-1529.
|
[17] |
ZHANG H F, TANG K, MA J W, et al. Ketogenesis-generated β-hydroxybutyrate is an epigenetic regulator of CD8+ T-cell memory development[J]. Nat Cell Biol, 2020, 22(1):18-25.
|
[18] |
SANGALLI J R, NOCITI R P, DEL COLLADO M, et al. Characterization of histone lysine β-hydroxybutyrylation in bovine tissues, cells, and cumulus-oocyte complexes[J]. Mol Reprod Dev, 2022, 89(9):375-398.
|
[19] |
KELLY R D W, CHANDRU A, WATSON P J, et al. Histone deacetylase (HDAC) 1 and 2 complexes regulate both histone acetylation and crotonylation in vivo[J]. Sci Rep, 2018, 8(1):14690.
|
[20] |
SHIMAZU T, HIRSCHEY M D, NEWMAN J, et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor[J]. Science, 2013, 339(6116):211-214.
|
[21] |
SABARI B R, ZHANG D, ALLIS C D, et al. Metabolic regulation of gene expression through histone acylations[J]. Nat Rev Mol Cell Biol, 2017, 18(2):90-101.
|
[22] |
SANGALLI J R, SAMPAIO R V, DEL COLLADO M, et al. Metabolic gene expression and epigenetic effects of the ketone body β-hydroxybutyrate on H3K9ac in bovine cells, oocytes and embryos[J]. Sci Rep, 2018, 8(1):13766.
|
[23] |
HU E L, DU H, SHANG S, et al. Beta-hydroxybutyrate enhances BDNF expression by increasing H3K4me3 and decreasing H2AK119ub in hippocampal neurons[J]. Front Neurosci, 2020, 14:591177.
|
[24] |
HU E L, DU H, ZHU X L, et al. Beta-hydroxybutyrate promotes the expression of BDNF in hippocampal neurons under adequate glucose supply[J]. Neuroscience, 2018, 386:315-325.
|
[25] |
XU H W, WU M Y, MA X M, et al. Function and mechanism of novel histone posttranslational modifications in health and disease[J]. Biomed Res Int, 2021, 2021:6635225.
|
[26] |
NASSER S, VIALICHKA V, BIESIEKIERSKA M, et al. Effects of ketogenic diet and ketone bodies on the cardiovascular system:concentration matters[J]. World J Diabetes, 2020, 11(12):584-595.
|
[27] |
MCGETTRICK A F, O'NEILL L A J. How metabolism generates signals during innate immunity and inflammation[J]. J Biol Chem, 2013, 288(32):22893-22898.
|
[28] |
陈华青, 刘明耀. G蛋白偶联受体及其信号转导在免疫与炎症中的作用[J]. 现代免疫学, 2009, 29(6):441-446.CHEN H Q, LIU M Y. The role of G protein-coupled receptors and their signal transduction in immunity and inflammation[J]. Current Immunology, 2009, 29(6):441-446. (in Chinese)
|
[29] |
NEWMAN J C, VERDIN E. β-Hydroxybutyrate:a signaling metabolite[J]. Annu Rev Nutr, 2017, 37:51-76.
|
[30] |
GRAFF E C, FANG H, WANDERS D, et al. Anti-inflammatory effects of the hydroxycarboxylic acid receptor 2[J]. Metabolism, 2016, 65(2):102-113.
|
[31] |
FU S P, LI S N, WANG J F, et al. BHBA suppresses LPS-induced inflammation in BV-2 cells by inhibiting NF-κB activation[J]. Mediators Inflamm, 2014, 2014:983401.
|
[32] |
GAMBHIR D, ANANTH S, VEERANAN-KARMEGAM R, et al. GPR109A as an anti-inflammatory receptor in retinal pigment epithelial cells and its relevance to diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2012, 53(4):2208-2217.
|
[33] |
VANHOLDER T, PAPEN J, BEMERS R, et al. Risk factors for subclinical and clinical ketosis and association with production parameters in dairy cows in the Netherlands[J]. J Dairy Sci, 2015, 98(2):880-888.
|
[34] |
SHEN T Y, LI X W, LOOR J J, et al. Hepatic nuclear factor kappa B signaling pathway and NLR family pyrin domain containing 3 inflammasome is over-activated in ketotic dairy cows[J]. J Dairy Sci, 2019, 102(11):10554-10563.
|
[35] |
CARRETTA M D, BARRÍA Y, BORQUEZ K, et al. β-Hydroxybutyrate and hydroxycarboxylic acid receptor 2 agonists activate the AKT, ERK and AMPK pathways, which are involved in bovine neutrophil chemotaxis[J]. Sci Rep, 2020, 10(1):12491.
|
[36] |
MIELENZ M. Invited review:nutrient-sensing receptors for free fatty acids and hydroxycarboxylic acids in farm animals[J]. Animal, 2017, 11(6):1008-1016.
|
[37] |
WEN H T, MIAO E A, TING J P Y. Mechanisms of NOD-like receptor-associated inflammasome activation[J]. Immunity, 2013, 39(3):432-441.
|
[38] |
GOLDBERG E L, ASHER J L, MOLONY R D, et al. β-hydroxybutyrate deactivates neutrophil NLRP3 inflammasome to relieve gout flares[J]. Cell Rep, 2017, 18(9):2077-2087.
|
[39] |
KONG G G, LIU J H, LI R, et al. Ketone metabolite β-hydroxybutyrate ameliorates inflammation after spinal cord injury by inhibiting the NLRP3 inflammasome[J]. Neurochem Res, 2021, 46(2):213-229.
|
[40] |
YAMANASHI T, IWATA M, KAMIYA N, et al. Beta-hydroxybutyrate, an endogenic NLRP3 inflammasome inhibitor, attenuates stress-induced behavioral and inflammatory responses[J]. Sci Rep, 2017, 7(1):7677.
|
[41] |
LUGRIN J, ROSENBLATT-VELIN N, PARAPANOV R, et al. The role of oxidative stress during inflammatory processes[J]. Biol Chem, 2014, 395(2):203-230.
|
[42] |
HACES M L, HERNÁNDEZ-FONSECA K, MEDINA-CAMPOS O N, et al. Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions[J]. Exp Neurol, 2008, 211(1):85-96.
|
[43] |
DONG Z H, SUN X D, TANG Y, et al. β-hydroxybutyrate impairs monocyte function via the ROS-NLR family pyrin domain-containing three inflammasome (NLRP3) pathway in ketotic cows[J]. Front Vet Sci, 2022, 9:925900.
|
[44] |
GAO X X, ZHANG X, JIANG L Q, et al. Forsythin inhibits β-hydroxybutyrate-induced oxidative stress in bovine macrophages by regulating p38/ERK, PI3K/Akt, and Nrf2/HO-1 signaling pathways[J]. Res Vet Sci, 2023, 154:59-65.
|
[45] |
SHI X X, LI X W, LI D D, et al. β-Hydroxybutyrate activates the NF-κB signaling pathway to promote the expression of pro-inflammatory factors in calf hepatocytes[J]. Cell Physiol Biochem, 2014, 33(4):920-932.
|
[46] |
LONGO R, PERI C, CRICRÌ D, et al. Ketogenic diet:a new light shining on old but gold biochemistry[J]. Nutrients, 2019, 11(10):2497.
|
[47] |
庄一民, 刁其玉, 张乃锋. 幼龄反刍动物瘤胃上皮细胞β-羟基丁酸代谢与调控机制[J]. 畜牧兽医学报, 2020, 51(4):660-669.ZHUANG Y M, DIAO Q Y, ZHANG N F. Metabolism and regulation mechanism of beta-hydroxybutyric acid in ruminal epithelium cells of young ruminants[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(4):660-669. (in Chinese)
|
[48] |
NORWITZ N G, JARAMILLO J G, CLARKE K, et al. Ketotherapeutics for neurodegenerative diseases[J]. Int Rev Neurobiol, 2020, 155:141-168.
|
[49] |
FU S P, WANG J F, XUE W J, et al. Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson's disease models are mediated by GPR109A-dependent mechanisms[J]. J Neuroinflammation, 2015, 12:9.
|
[50] |
SHIPPY D C, WILHELM C, VIHARKUMAR P A, et al. β-Hydroxybutyrate inhibits inflammasome activation to attenuate Alzheimer's disease pathology[J]. J Neuroinflammation, 2020, 17(1):280.
|
[51] |
FRISE C J, MACKILLOP L, JOASH K, et al. Starvation ketoacidosis in pregnancy[J]. Eur J Obstet Gynecol Reprod Biol, 2013, 167(1):1-7.
|
[52] |
WANKHADE P R, MANIMARAN A, KUMARESAN A, et al. Metabolic and immunological changes in transition dairy cows:a review[J]. Vet World, 2017, 10(11):1367-1377.
|
[53] |
STEENEVELD W, AMUTA P, VAN SOEST F J S, et al. Estimating the combined costs of clinical and subclinical ketosis in dairy cows[J]. PLoS One, 2020, 15(4):e0230448.
|
[54] |
ALBAAJ A, JATTIOT M, MANCIAUX L, et al. Hyperketolactia occurrence before or after artificial insemination is associated with a decreased pregnancy per artificial insemination in dairy cows[J]. J Dairy Sci, 2019, 102(9):8527-8536.
|
[55] |
ALERI J W, HINE B C, PYMAN M F, et al.Periparturient immunosuppression and strategies to improve dairy cow health during the periparturient period[J]. Res Vet Sci, 2016, 108:8-17.
|
[56] |
赵婉莉, 曹棋棋, 杨 悦, 等. 胃肠道菌群与黏膜免疫在围产期奶牛健康中的作用[J]. 畜牧兽医学报, 2023, 54(7):2751-2760.ZHAO W L, CAO Q Q, YANG Y, et al. The interaction between gastrointestinal microbiota and mucosal immunity in health of perinatal dairy cows[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7):2751-2760. (in Chinese)
|