畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (10): 4016-4027.doi: 10.11843/j.issn.0366-6964.2023.10.002
杨志梅1, 梁成成1, 张殿琦1, 李雪峰1, 昝林森1,2*
收稿日期:
2023-03-21
出版日期:
2023-10-23
发布日期:
2023-10-26
通讯作者:
昝林森,主要从事肉牛奶牛遗传改良与种质创新方面的工作研究,E-mail:zanlinsen@163.com
作者简介:
杨志梅(1999-),女,宁夏固原人,硕士生,主要从事动物遗传育种与繁殖研究,E-mail:yangzhimei@nwafu.edu.cn
基金资助:
YANG Zhimei1, LIANG Chengcheng1, ZHANG Dianqi1, LI Xuefeng1, ZAN Linsen1,2*
Received:
2023-03-21
Online:
2023-10-23
Published:
2023-10-26
摘要: Circular RNAs (circRNAs)是由pre-RNA通过反向剪接使5'尾端和3'polyA端以共价结合的形式形成的环状RNA,在多种生物学过程起重要作用。N6-甲基腺苷修饰(N6-methyladenosine,m6A)是真核生物中最丰富的修饰之一,参与调控RNA的剪接、翻译及降解等过程。现越来越多证据表明m6A修饰也存在于环状RNA中并且介导环状RNA的翻译、降解等。本文主要综述了circRNA在真核生物中的合成和作用机制以及m6A修饰对circRNA的调控作用。
中图分类号:
杨志梅, 梁成成, 张殿琦, 李雪峰, 昝林森. m6A修饰调控circRNA的研究进展[J]. 畜牧兽医学报, 2023, 54(10): 4016-4027.
YANG Zhimei, LIANG Chengcheng, ZHANG Dianqi, LI Xuefeng, ZAN Linsen. Research Progress on the Regulation of circRNA by m6A Modification[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4016-4027.
[1] | SANGER H L, KLOTZ G, RIESNER D, et al.Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J].Proc Natl Acad Sci U S A, 1976, 73(11):3852-3856. |
[2] | GROSS H J, DOMDEY H, LOSSOW C, et al.Nucleotide sequence and secondary structure of potato spindle tuber viroid[J].Nature, 1978, 273(5659):203-208. |
[3] | WILUSZ J E.A 360° view of circular RNAs:From biogenesis to functions[J].Wiley Interdiscip Rev RNA, 2018, 9(4):e1478. |
[4] | ZHANG X O, DONG R, ZHANG Y, et al.Diverse alternative back-splicing and alternative splicing landscape of circular RNAs[J].Genome Res, 2016, 26(9):1277-1287. |
[5] | SUN T, WU R Y, MING L.The role of m6A RNA methylation in cancer[J].Biomed Pharmacother, 2019, 112:108613. |
[6] | DESROSIERS R, FRIDERICI K, ROTTMAN F.Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells[J].Proc Natl Acad Sci U S A, 1974, 71(10):3971-3975. |
[7] | AN M J, ZHENG H H, HUANG J, et al.Aberrant nuclear export of circNCOR1 underlies SMAD7-mediated lymph node metastasis of bladder cancer[J].Cancer Res, 2022, 82(12):2239-2253. |
[8] | CHEN R X, CHEN X, XIA L P, et al.N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis[J].Nat Commun, 2019, 10(1):4695. |
[9] | RONG D W, WU F, LU C, et al.m6A modification of circHPS5 and hepatocellular carcinoma progression through HMGA2 expression[J].Mol Ther Nucl Acids, 2021, 26:637-648. |
[10] | BARRETT S P, WANG P L, SALZMAN J.Circular RNA biogenesis can proceed through an exon-containing lariat precursor[J].eLife, 2015, 4:e07540. |
[11] | ASHWAL-FLUSS R, MEYER M, PAMUDURTI N R, et al.circRNA biogenesis competes with pre-mRNA splicing[J].Mol Cell, 2014, 56(1):55-66. |
[12] | JECK W R, SORRENTINO J A, WANG K, et al.Circular RNAs are abundant, conserved, and associated with ALU repeats[J].RNA, 2013, 19(2):141-157. |
[13] | ZHANG Y, ZHANG X O, CHEN T, et al.Circular intronic long noncoding RNAs[J].Mol Cell, 2013, 51(6):792-806. |
[14] | ZHANG X O, DONG R, ZHANG Y, et al.Diverse alternative back-splicing and alternative splicing landscape of circular RNAs[J].Genome Res, 2016, 26(9):1277-1287. |
[15] | EGER N, SCHOPPE L, SCHUSTER S, et al.Circular RNA splicing[J].Adv Exp Med Biol, 2018, 1087:41-52. |
[16] | SCHINDEWOLF C, BRAUN S, DOMDEY H.In vitro generation of a circular exon from a linear pre-mRNA transcript[J]. Nucl Acids Res, 1996, 24(7):1260-1266. |
[17] | KRAMER M C, LIANG D M, TATOMER D C, et al.Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins[J].Genes Dev, 2015, 29(20):2168-2182. |
[18] | LIANG D M, WILUSZ J E.Short intronic repeat sequences facilitate circular RNA production[J].Genes Dev, 2014, 28(20):2233-2247. |
[19] | ZHANG X O, WANG H B, ZHANG Y, et al.Complementary sequence-mediated exon circularization[J].Cell, 2014, 159(1):134-147. |
[20] | CONN S J, PILLMAN K A, TOUBIA J, et al.The RNA binding protein quaking regulates formation of circRNAs[J].Cell, 2015, 160(6):1125-1134. |
[21] | TEPLOVA M, HAFNER M, TEPLOV D, et al.Structure-function studies of STAR family Quaking proteins bound to their in vivo RNA target sites[J].Genes Dev, 2013, 27(8):928-940. |
[22] | LI X, LIU C X, XUE W, et al.Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection[J].Mol Cell, 2017, 67(2):214-227.e7. |
[23] | HANSEN T B, JENSEN T I, CLAUSEN B H, et al.Natural RNA circles function as efficient microRNA sponges[J].Nature, 2013, 495(7441):384-388. |
[24] | 林晓冰, 梁小锋, 彭智燊, 等.环状RNA在系统性红斑狼疮中的研究进展[J].现代免疫学, 2022, 42(6):541-546.LIN X B, LIANG X F, PENG Z S, et al.Research progress of circular RNAs in systematic lupus erythematosus[J].Current Immunology, 2022, 42(6):541-546.(in Chinese) |
[25] | YE C Y, CHEN L, LIU C, et al.Widespread noncoding circular RNAs in plants[J].New Phytol, 2015, 208(1):88-95. |
[26] | LU T T, CUI L L, ZHOU Y, et al.Transcriptome-wide investigation of circular RNAs in rice[J].RNA, 2015, 21(12):2076-2087. |
[27] | CHEN L, ZHANG P, FAN Y, et al.Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize[J].New Phytol, 2018, 217(3):1292-1306. |
[28] | WANG L D, LIANG W S, WANG S S, et al.Circular RNA expression profiling reveals that circ-PLXNA1 functions in duck adipocyte differentiation[J].PLoS One, 2020, 15(7):e0236069. |
[29] | YAN X M, ZHANG Z, MENG Y, et al.Genome-wide identification and analysis of circular RNAs differentially expressed in the longissimus dorsi between Kazakh cattle and Xinjiang brown cattle[J].PeerJ, 2020, 8:e8646. |
[30] | SHEN X M, TANG J, HUANG Y Z, et al.CircRNF111 contributes to adipocyte differentiation by elevating PPARγ expression via miR-27a-3p[J].Epigenetics, 2023, 18(1):2145058. |
[31] | ZHANG X Y, YANG S L, KANG Z H, et al.circMEF2D negatively regulated by HNRNPA1 inhibits proliferation and differentiation of myoblasts via miR-486-PI3K/AKT axis[J].J Agric Food Chem, 2022, 70(26):8145-8163. |
[32] | QI A, RU W X, YANG H Y, et al.Circular RNA ACTA1 acts as a sponge for miR-199a-5p and miR-433 to regulate bovine myoblast development through the MAP3K11/MAP2K7/JNK pathway[J].J Agric Food Chem, 2022, 70(10):3357-3373. |
[33] | YANG Z X, SONG C C, JIANG R, et al.CircNDST1 regulates bovine myoblasts proliferation and differentiation via the miR-411a/Smad4 axis[J].J Agric Food Chem, 2022, 70(32):10044-10057. |
[34] | FAN Y X, ZHANG Z, DENG K P, et al.CircUBE3A promotes myoblasts proliferation and differentiation by sponging miR-28-5p to enhance expression[J].Int J Biol Macromol, 2023, 226:730-745. |
[35] | ZHANG Z, FAN Y X, DENG K P, et al.Circular RNA circUSP13 sponges miR-29c to promote differentiation and inhibit apoptosis of goat myoblasts by targeting IGF1[J].FASEB J, 2022, 36(1):e22097. |
[36] | JIAO P X, ZHANG M M, WANG Z W, et al.Circ003429 regulates unsaturated fatty acid synthesis in the dairy goat mammary gland by interacting with miR-199a-3p, targeting the YAP1 gene[J].Int J Mol Sci, 2022, 23(7):4068. |
[37] | ZHAO J Y, SHEN J C, WANG Z Y, et al.CircRNA-0100 positively regulates the differentiation of cashmere goat SHF-SCs into hair follicle lineage via sequestering miR-153-3p to heighten the KLF5 expression[J].Arch Anim Breed, 2022, 65(1):55-67. |
[38] | ZHUANG X N, LIN Z K, XIE F, et al.Identification of circRNA-associated ceRNA networks using longissimus thoracis of pigs of different breeds and growth stages[J].BMC Genomics, 2022, 23(1):294. |
[39] | SUN D, AN J Q, CUI Z X, et al.CircCSDE1 regulates proliferation and differentiation of C2C12 myoblasts by sponging miR-21-3p[J].Int J Mol Sci, 2022, 23(19):12038. |
[40] | ZOU Q, WANG X, YUAN R, et al.Circ004463 promotes fibroblast proliferation and collagen I synthesis by sponging miR-23b and regulating CADM3/MAP4K4 via activation of AKT/ERK pathways[J].Int J Biol Macromol, 2023, 226:357-367. |
[41] | DING N, ZHANG Y, HUANG M N, et al.Circ-CREBBP inhibits sperm apoptosis via the PI3K-Akt signaling pathway by sponging miR-10384 and miR-143-3p[J].Commun Biol, 2022, 5(1):1339. |
[42] | TIAN W H, ZHANG B, ZHONG H A, et al.Dynamic expression and regulatory network of circular RNA for abdominal preadipocytes differentiation in chicken (Gallus gallus)[J].Front Cell Dev Biol, 2021, 9:761638. |
[43] | JANGA S C, MITTAL N.Construction, structure and dynamics of post-transcriptional regulatory network directed by RNA-binding proteins[J].Adv Exp Med Biol, 2011, 722:103-117. |
[44] | JANAS T, JANAS M M, SAPOŃ K, et al.Mechanisms of RNA loading into exosomes[J].FEBS Lett, 2015, 589(13):1391-1398. |
[45] | DU W W, ZHANG C, YANG W N, et al.Identifying and characterizing circRNA-protein interaction[J].Theranostics, 2017, 7(17):4183-4191. |
[46] | CHEN H M, KONG Y, YAO Q, et al.Three hypomethylated genes were associated with poor overall survival in pancreatic cancer patients[J].Aging (Albany NY), 2019, 11(3):885-897. |
[47] | MAZUREK S, BOSCHEK C B, HUGO F, et al.Pyruvate kinase type M2 and its role in tumor growth and spreading[J]. Semin Cancer Biol, 2005, 15(4):300-308. |
[48] | WANG H J, HSIEH Y J, CHENG W C, et al.JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1α-mediated glucose metabolism[J].Proc Natl Acad Sci U S A, 2014, 111(1):279-284. |
[49] | SONG J, ZHENG J, LIU X B, et al.A novel protein encoded by ZCRB1-induced circHEATR5B suppresses aerobic glycolysis of GBM through phosphorylation of JMJD5[J].J Exp Clin Cancer Res, 2022, 41(1):171. |
[50] | LACERDA R, MENEZES J, ROMÃO L.More than just scanning:the importance of cap-independent mRNA translation initiation for cellular stress response and cancer[J].Cell Mol Life Sci, 2017, 74(9):1659-1680. |
[51] | GODET A C, DAVID F, HANTELYS F, et al.IRES trans-acting factors, key actors of the stress response[J].Int J Mol Sci, 2019, 20(4):924. |
[52] | YANG Y, WANG C F, ZHAO K L, et al.TRMP, a p53-inducible long noncoding RNA, regulates G1/S cell cycle progression by modulating IRES-dependent p27 translation[J].Cell Death Dis, 2018, 9(9):886. |
[53] | YANG Y, FAN X J, MAO M W, et al.Extensive translation of circular RNAs driven by N6-methyladenosine[J].Cell Res, 2017, 27(5):626-641. |
[54] | XIA X, LI X X, LI F Y, et al.A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1[J].Mol Cancer, 2019, 18(1):131. |
[55] | LEGNINI I, DI TIMOTEO G, ROSSI F, et al.Circ-ZNF609 is a circular RNA that can Be translated and functions in myogenesis[J].Mol Cell, 2017, 66(1):22-37.e9. |
[56] | ZHENG X, CHEN L J, ZHOU Y, et al.A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling[J].Mol Cancer, 2019, 18(1):47. |
[57] | LI Z Y, HUANG C, BAO C, et al.Exon-intron circular RNAs regulate transcription in the nucleus[J].Nat Struct Mol Biol, 2015, 22(3):256-264. |
[58] | CONN V M, HUGOUVIEUX V, NAYAK A, et al.A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation[J].Nat Plants, 2017, 3:17053. |
[59] | XU X L, ZHANG J W, TIAN Y H, et al.CircRNA inhibits DNA damage repair by interacting with host gene[J].Mol Cancer, 2020, 19(1):128. |
[60] | FENG Y, YANG Y X, ZHAO X D, et al.Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP[J].Cell Death Dis, 2019, 10(11):792. |
[61] | CHEN Z Z, LU T K, HUANG L, et al.Circular RNA cia-MAF drives self-renewal and metastasis of liver tumor-initiating cells via transcription factor MAFF[J].J Clin Invest, 2021, 131(19):e148020. |
[62] | SALETORE Y, MEYER K, KORLACH J, et al.The birth of the Epitranscriptome:deciphering the function of RNA modifications[J].Genome Biol, 2012, 13(10):175. |
[63] | LIU N, PAN T.N6-methyladenosine-encoded epitranscriptomics[J].Nat Struct Mol Biol, 2016, 23(2):98-102. |
[64] | ZACCARA S, RIES R J, JAFFREY S R.Reading, writing and erasing mRNA methylation[J].Nat Rev Mol Cell Biol, 2019, 20(10):608-624. |
[65] | EDENS B M, VISSERS C, SU J, et al.FMRP modulates neural differentiation through m6A-dependent mRNA nuclear export[J].Cell Rep, 2019, 28(4):845-854.e5. |
[66] | ZHAO B S, ROUNDTREE I A, HE C.Post-transcriptional gene regulation by mRNA modifications[J].Nat Rev Mol Cell Biol, 2017, 18(1):31-42. |
[67] | YU R Q, LI Q M, FENG Z H, et al.m6A reader YTHDF2 regulates LPS-induced inflammatory response[J].Int J Mol Sci, 2019, 20(6):1323. |
[68] | DOMINISSINI D, MOSHITCH-MOSHKOVITZ S, SCHWARTZ S, et al.Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J].Nature, 2012, 485(7397):201-206. |
[69] | MEYER K D, SALETORE Y, ZUMBO P, et al.Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons[J].Cell, 2012, 149(7):1635-1646. |
[70] | LINDER B, GROZHIK A V, OLARERIN-GEORGE A O, et al.Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome[J].Nat Methods, 2015, 12(8):767-772. |
[71] | MEYER K D.DART-seq:an antibody-free method for global m6A detection[J].Nat Methods, 2019, 16(12):1275-1280. |
[72] | IMAM H, KHAN M, GOKHALE N S, et al.N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle[J].Proc Natl Acad Sci U S A, 2018, 115(35):8829-8834. |
[73] | PING X L, SUN B F, WANG L, et al.Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24(2):177-189. |
[74] | SCHÖLLER E, WEICHMANN F, TREIBER T, et al.Interactions, localization, and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex[J].RNA, 2018, 24(4):499-512. |
[75] | BODI Z, ZHONG S L, MEHRA S, et al.Adenosine methylation in Arabidopsis mRNA is associated with the 3' end and reduced levels cause developmental defects[J].Front Plant Sci, 2012, 3:48. |
[76] | XU K, YANG Y, FENG G H, et al.Mettl3-mediated m6A regulates spermatogonial differentiation and meiosis initiation[J]. Cell Res, 2017, 27(9):1100-1114. |
[77] | KABECHE L, NGUYEN H D, BUISSON R, et al.A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation[J].Science, 2017, 359(6371):108-114. |
[78] | YANG X, LIU Q L, XU W, et al.m6A promotes R-loop formation to facilitate transcription termination[J].Cell Res, 2019, 29(12):1035-1038. |
[79] | FEDELES B I, SINGH V, DELANEY J C, et al.The AlkB family of Fe(II)/α-ketoglutarate-dependent dioxygenases:repairing nucleic acid alkylation damage and beyond[J].J Biol Chem, 2015, 290(34):20734-20742. |
[80] | 史源钧, 米思远, 俞 英.m6A表观遗传修饰及其调控机制研究进展[J].中国畜牧兽医, 2022, 49(1):197-207.SHI Y J, MI S Y, YU Y.Research progress on m6A epigenetic modification and its regulation mechanism[J].China Animal Husbandry & Veterinary Medicine, 2022, 49(1):197-207.(in Chinese) |
[81] | JIA G F, YANG C G, YANG S D, et al.Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO[J].FEBS Lett, 2008, 582(23-24):3313-3319. |
[82] | JIA G F, FU Y, ZHAO X, et al.N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J].Nat Chem Biol, 2011, 7(12):885-887. |
[83] | MAUER J, LUO X B, BLANJOIE A, et al.Reversible methylation of m6Am in the 5'cap controls mRNA stability[J].Nature, 2017, 541(7637):371-375. |
[84] | MAUER J, SINDELAR M, DESPIC V, et al.FTO controls reversible m6Am RNA methylation during snRNA biogenesis[J]. Nat Chem Biol, 2019, 15(4):340-347. |
[85] | WU R F, LIU Y H, YAO Y X, et al.FTO regulates adipogenesis by controlling cell cycle progression via m6A-YTHDF2 dependent mechanism[J].Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863(10):1323-1330. |
[86] | ZHENG G Q, DAHL J A, NIU Y M, et al.ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J].Mol Cell, 2013, 49(1):18-29. |
[87] | LI S W, XU S Y, CHEN Y H, et al.Metal exposure promotes colorectal tumorigenesis via the aberrant N6-methyladenosine modification of ATP13A3[J].Environ Sci Technol, 2023, 57(7):2864-2876. |
[88] | SUN R, YUAN L, JIANG Y, et al.ALKBH5 activates FAK signaling through m6A demethylation in ITGB1 mRNA and enhances tumor-associated lymphangiogenesis and lymph node metastasis in ovarian cancer[J].Theranostics, 2023, 13(2):833-848. |
[89] | WANG X, ZHAO B S, ROUNDTREE I A, et al.N6-methyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015, 161(6):1388-1399. |
[90] | WANG X, LU Z K, GOMEZ A, et al.N6-methyladenosine-dependent regulation of messenger RNA stability[J].Nature, 2014, 505(7481):117-120. |
[91] | SHI H L, WANG X, LU Z K, et al.YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA[J].Cell Res, 2017, 27(3):315-328. |
[92] | ROUNDTREE I A, LUO G Z, ZHANG Z J, et al.YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs[J].eLife, 2017, 6:e31311. |
[93] | LI T, HU P S, ZUO Z X, et al.METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma[J].Mol Cancer, 2019, 18(1):112. |
[94] | CHEN H H, YU H I, YANG M H, et al.DDX3 activates CBC-eIF3-mediated translation of uORF-containing oncogenic mRNAs to promote metastasis in HNSCC[J].Cancer Res, 2018, 78(16):4512-4523. |
[95] | ZHANG J, ZHANG X L, LI C D, et al.Circular RNA profiling provides insights into their subcellular distribution and molecular characteristics in HepG2 cells[J].RNA Biol, 2019, 16(2):220-232. |
[96] | HUANG C, LIANG D M, TATOMER D C, et al.A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs[J].Genes Dev, 2018, 32(9-10):639-644. |
[97] | SHEN H H.UAP56-a key player with surprisingly diverse roles in pre-mRNA splicing and nuclear export[J].BMB Rep, 2009, 42(4):185-188. |
[98] | HUANG C, LIANG D M, TATOMER D C, et al.A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs[J].Genes Dev, 2018, 32(9-10):639-644. |
[99] | PRATS A C, DAVID F, DIALLO L H, et al.Circular RNA, the key for translation[J].Int J Mol Sci, 2020, 21(22):8591. |
[100] | ZHOU J, WAN J, GAO X W, et al.Dynamic m6A mRNA methylation directs translational control of heat shock response[J].Nature, 2015, 526(7574):591-594. |
[101] | DI TIMOTEO G, DATTILO D, CENTRÓN-BROCO A, et al.Modulation of circRNA metabolism by m6A modification[J]. Cell Rep, 2020, 31(6):107641. |
[102] | DUAN J L, CHEN W, XIE J J, et al.A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma[J].Mol Cancer, 2022, 21(1):93. |
[103] | HANSEN T B, WIKLUND E D, BRAMSEN J B, et al.miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA[J].EMBO J, 2011, 30(21):4414-4422. |
[104] | LUO Y, NA Z K, SLAVOFF S A.P-bodies:composition, properties, and functions[J].Biochemistry, 2018, 57(17):2424-2431. |
[105] | JIA R R, XIAO M S, LI Z G, et al.Defining an evolutionarily conserved role of GW182 in circular RNA degradation[J].Cell Discov, 2019, 5:45. |
[106] | PARK O H, HA H, LEE Y, et al.Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex[J].Mol Cell, 2019, 74(3):494-507.e8. |
[107] | GUO Y X, GUO Y Y, CHEN C, et al.Circ3823 contributes to growth, metastasis and angiogenesis of colorectal cancer:involvement of miR-30c-5p/TCF7 axis[J].Mol Cancer, 2021, 20(1):93. |
[108] | LIU Y X, YANG Y H, LIN Y C, et al.N6-methyladenosine-modified circRNA RERE modulates osteoarthritis by regulating β-catenin ubiquitination and degradation[J].Cell Prolif, 2023, 56(1):e13297. |
[109] | SCHLEE M, HARTMANN G.Discriminating self from non-self in nucleic acid sensing[J].Nat Rev Immunol, 2016, 16(9):566-580. |
[110] | GARCIA M A, MEURS E F, ESTEBAN M.The dsRNA protein kinase PKR:virus and cell control[J].Biochimie, 2007, 89(6-7):799-811. |
[111] | LIU C X, GUO S K, NAN F, et al.RNA circles with minimized immunogenicity as potent PKR inhibitors[J].Mol Cell, 2022, 82(2):420-434.e6. |
[112] | MOLDOVAN L I, HANSEN T B, VENO M T, et al.High-throughput RNA sequencing from paired lesional-and non-lesional skin reveals major alterations in the psoriasis circRNAome[J].BMC Med Genomics, 2019, 12(1):174. |
[113] | REIKINE S, NGUYEN J B, MODIS Y.Pattern recognition and signaling mechanisms of RIG-I and MDA5[J].Front Immunol, 2014, 5:342. |
[114] | RIES R J, ZACCARA S, KLEIN P, et al.m6A enhances the phase separation potential of mRNA[J].Nature, 2019, 571(7765):424-428. |
[115] | CHEN Y G, CHEN R, AHMAD S, et al.N6-methyladenosine modification controls circular RNA immunity[J].Mol Cell, 2019, 76(1):96-109.e9. |
[1] | 张吉贤, 范定坤, 付域泽, 焦帅, 马涛, 毕研亮, 张乃锋. 后生素调控动物肠道健康的作用机制及应用进展[J]. 畜牧兽医学报, 2024, 55(5): 1926-1935. |
[2] | 罗通旺, 吴亚, 王书杰, 宋厚辉, 邵春艳. 镉致肝损伤机制及硒拮抗镉肝毒性的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1456-1466. |
[3] | 刘元红, 胡玉欢, 张莉, 杨萍瑞, 胡卫东, 马琪, 毕师诚. 白术-肉苁蓉治疗便秘的网络药理学分析及试验验证[J]. 畜牧兽医学报, 2024, 55(2): 834-845. |
[4] | 周梦婷, 宋银娟, 许健, 李斌, 冉多良, 储岳峰. 基于碳水化合物的佐剂作用机制研究进展[J]. 畜牧兽医学报, 2024, 55(2): 491-501. |
[5] | 韩皓哲, 帖子航, 庞卫军, 蔡瑞. IGF2BP2介导的m6A修饰调控动物脂肪沉积的研究进展[J]. 畜牧兽医学报, 2023, 54(9): 3605-3612. |
[6] | 张旭梅, 魏玉荣, 许丞惠, 杨彤, 史慧君, 付强, 杨莉. 基于网络药理学和试验验证分析小檗碱治疗鸡沙门菌感染的作用机制[J]. 畜牧兽医学报, 2023, 54(8): 3557-3570. |
[7] | 周炜炜, 王雪峰, 张梦洁, 杨娟, 孙悦龙, 张祖烽, 张宇欣, 豆佳红, 王梓颖, 戴小枫, 李秀梅. 基于生物网络功能模块整合组方规律分析四黄止痢颗粒治疗仔猪腹泻的作用机制[J]. 畜牧兽医学报, 2023, 54(7): 3031-3043. |
[8] | 罗菊, 毛嘉妮, 夏银钊, 杨震国. circRNAs对哺乳动物肠道屏障功能的调控作用[J]. 畜牧兽医学报, 2023, 54(11): 4439-4448. |
[9] | 孙栋, 屈莎, 李璇, 唐善虎, 李思宁, 郝刚. 抗菌肽Tachyplesin Ⅰ及衍生物对大肠杆菌细胞膜作用机制的对比研究[J]. 畜牧兽医学报, 2022, 53(9): 3180-3189. |
[10] | 田薇, 李秀梅, 杨娟, 王小莹, 周炜炜, 李中媛, 戴小枫. 基于网络药理学研究板蓝根抑菌活性成分及其作用机制[J]. 畜牧兽医学报, 2022, 53(8): 2782-2793. |
[11] | 孙严金, 薛亚男, 仲涛, 王林杰, 李利, 张红平, 占思远. HuR的功能及其对肌肉生长发育的调控作用[J]. 畜牧兽医学报, 2022, 53(5): 1345-1353. |
[12] | 刘贺娟, 史晨曦, 王静, 王美乐, 王栋涵, 魏战勇, 尹素改. 基于网络药理学探讨黄芩素对猪丁型冠状病毒感染的潜在作用机制[J]. 畜牧兽医学报, 2022, 53(11): 4097-4109. |
[13] | 吴香云, 刘亚娜, 周喆麒, 潘源虎, 郝海红, 程古月, 王玉莲. 多糖类化合物的抗菌作用及其机制研究进展[J]. 畜牧兽医学报, 2020, 51(6): 1167-1176. |
[14] | 何天乐, 董国忠, 杨震国. circRNAs对哺乳动物胎盘养分转运和胎儿发育的影响[J]. 畜牧兽医学报, 2019, 50(10): 1955-1962. |
[15] | 董朕, 白东东, 刘利利, 白玉彬, 王玮玮, 张继瑜, 周绪正. 基于网络药理学分析归芪益母汤治疗牛气血两虚证的作用机制[J]. 畜牧兽医学报, 2018, 49(12): 2733-2744. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||