畜牧兽医学报 ›› 2022, Vol. 53 ›› Issue (8): 2403-2416.doi: 10.11843/j.issn.0366-6964.2022.08.001
迟长安1, 彭思祺1, 申长庆1, 王世成1, 涂静怡1, 肖雄2, 邱小燕1*
收稿日期:
2021-12-14
出版日期:
2022-08-23
发布日期:
2022-08-23
通讯作者:
邱小燕,主要从事家畜行为与福利研究,E-mail:qiuxiaoyan168@163.com
作者简介:
迟长安(1997-),女,安徽马鞍山人,硕士生,主要从事家畜行为与福利的研究,E-mail:2672917816@qq.com
基金资助:
CHI Chang'an1, PENG Siqi1, SHEN Changqing1, WANG Shicheng1, TU Jingyi1, XIAO Xiong2, QIU Xiaoyan1*
Received:
2021-12-14
Online:
2022-08-23
Published:
2022-08-23
摘要: 动物认知是指动物受到环境变化的刺激或应激时,对其刺激做出的关联性学习和记忆,并做出适当的决定与反应能力。研究表明,家畜的认知功能与其繁殖性能和畜牧生产密切相关。这篇综述重点对近年来家畜认知行为和认知功能的国内外研究进展及认知对家畜繁殖、生产性能等方面的影响进行概述,较系统地阐述了“神经血管单元”、表观遗传修饰以及线粒体对认知功能的调控机制,为家畜认知行为和认知功能的深入研究提供重要的参考价值。
中图分类号:
迟长安, 彭思祺, 申长庆, 王世成, 涂静怡, 肖雄, 邱小燕. 家畜认知功能及其调控机制[J]. 畜牧兽医学报, 2022, 53(8): 2403-2416.
CHI Chang'an, PENG Siqi, SHEN Changqing, WANG Shicheng, TU Jingyi, XIAO Xiong, QIU Xiaoyan. Research Progress on Livestock Cognitive Function and Regulation Mechanisms[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2403-2416.
[1] | 邱小燕, 陈伊轲, 肖 雄, 等.白绒山羊和美利奴羊对颜色和左右空间的认知识别能力的差异性研究[J].畜牧兽医学报, 2018, 49(11):2384-2393.QIU X Y, CHEN Y K, XIAO X, et al.The difference between white cashmere goats and merino sheep in cognitive abilities for visual and spatial discriminations[J].Acta Veterinaria et Zootechnica Sinica, 2018, 49(11):2384-2393.(in Chinese) |
[2] | MORTON A J, AVANZO L.Executive decision-making in the domestic sheep[J].PLoS One, 2011, 6(1):e15752. |
[3] | QIU X Y.Gene polymorphisms associated with temperament in Merino sheep[D].Perth:The University of Western Australia, 2015. |
[4] | QIU X Y, XIAO X, LI N, et al.Association of steroid 17-alpha-hydroxylase/17, 20 lyase (CYP17) single nucleotide polymorphism (SNP) 628 and dopamine receptor D2 (DRD2) SNP939 genotypes with sheep reproductive performance[J].Reprod Fertil Dev, 2019, 31(4):743-750. |
[5] | BLACHE D, BICKELL S L.Temperament and reproductive biology:emotional reactivity and reproduction in sheep[J].Rev Bras Zootec, 2010, 39(39):401-408. |
[6] | MOUSTGAARD A, ARNFRED S M, LIND N M, et al.Discriminations, reversals, and extra-dimensional shifts in the Gottingen minipig[J]. Behav Process, 2004, 67(1):27-37. |
[7] | REHKÄMPER G, GÖRLACH A.Visual discrimination in adult dairy bulls[J].J Dairy Sci, 1997, 80(8):1613-1621. |
[8] | QIU X Y, LEDGER J, ZHENG C, et al.Associations between temperament and gene polymorphisms in thebrain dopaminergic system and the adrenal gland of sheep[J].Physiol Behav, 2016, 153:19-27. |
[9] | GUENIOT F, MOREL J L, COUFFINHAL T, et al.Development of a mouse model for chronic cerebral hypoperfusion:analysis of its impact on neurovascular unit and cognitive impairment[J].Arch Cardiovasc Dis Suppl, 2018, 10(2):225-226. |
[10] | FARFARA D, FEIERMAN E, RICHARDS A, et al.Knockdown of circulating C1 inhibitor induces neurovascular impairment, glial cell activation, neuroinflammation, and behavioral deficits[J].GLIA, 2019, 67(7):1359-1373. |
[11] | MISRANI A, TABASSUM S, YANG L.Mitochondrial dysfunction and oxidative stress in Alzheimer's disease[J].Front Aging Neurosci, 2021, 13:617588. |
[12] | RIZZUTO R, DE STEFANI D, RAFFAELLO A, et al.Mitochondria as sensors and regulators of calcium signalling[J].Nat Rev Mol Cell Biol, 2012, 13(9):566-578. |
[13] | REDDY P H, OLIVER D M A.Amyloidbeta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer's disease[J].Cells, 2019, 8(5):488. |
[14] | MEHTA A, BALTIMORE D.MicroRNAs as regulatory elements in immune system logic[J].Nat Rev Immunol, 2016, 16(5):279-294. |
[15] | MEAGHER R K, STRAZHNIK E, VON KEYSERLINGK M A G, et al.Assessing the motivation to learn in cattle[J].Sci Rep, 2020, 10(1):6847. |
[16] | HAGEN K, BROOM D M.Emotional reactions to learning in cattle[J].Appl Anim Behav Sci, 2004, 85(3-4):203-213. |
[17] | NEJA W, SAWA A, JANKOWSKA M, et al.Effect of the temperament of dairy cows on lifetime production efficiency[J].Arch Anim Breed, 2015, 58(1):193-197. |
[18] | CHOUDHARY K K, BHARADWAJ A, SHARMA R K, et al.Relationship of temperament with oestrous behaviour, resumption of ovarian cyclicity and milk yield in post-partum Murrah buffaloes[J].Reprod Dom Anim, 2017, 52(6):962-968. |
[19] | VANN R C, LITTLEJOHN B P, RILEY D G, et al.The influence of cow temperament on temperament and performance of offspring[J].J Anim Sci, 2017, 95(S4):242. |
[20] | BRUNO K, MCPHILLIPS L J, CALVO-LORENZOM, et al.Effect of temperament measures on feedlot cattle performance[J].J Anim Sci, 2018, 96(S1):18-19. |
[21] | OLSON C A, CARSTENS G E, HERRING A D, et al.Effects of temperament at feedlot arrival and breed type on growth efficiency, feeding behavior, and carcass value in finishing heifers[J].J Anim Sci, 2019, 97(4):1828-1839. |
[22] | COOKE R F, MORIEL P, CAPPELLOZZA B I, et al.Effects of temperament on growth, plasma cortisol concentrations and puberty attainment in Nelore beef heifers[J].Animal, 2019, 13(6):1208-1213. |
[23] | BRAGA J S, FAUCITANO L, MACITELLI F, et al.Temperament effects on performance and adaptability of Nellore young bulls to the feedlot environment[J].Livest Sci, 2018, 216:88-93. |
[24] | SANT ANNA A C, VALENTE T, MAGALHES A, et al.Relationships between temperament, meat quality, and carcass traits in Nellore cattle[J].J Anim Sci, 2019, 97(12):4721-4731. |
[25] | WHITE S H, LONG C R, RANDEL R D, et al.Influence of temperament on skelet al muscle mitochondrial capacity of Brahman cows[J].J Anim Sci, 2017, 95(S4):218. |
[26] | CAROLINE L F, ANDRE M C, DAIANE C M S, et al.Temperament of Nelore growing-steers receiving supplementation in grazing system:performance, ultrasound measures, feeding behavior, and serum parameters[J].Livest Sci, 2020, 241:104203. |
[27] | HART K W, CONTOU C, BLACKBERRY M, et al.Merino ewes divergently selected for calm temperament have a greater concentration of immunoglobulin G in their colostrum than nervous ewes[J].Proc Assoc Advmt Anim Breed Genet, 2009, 18:576-579. |
[28] | PAJOR F, MURÁNYI A, SZENTLÉLEKI A, et al.Effect of temperament of ewes on their maternal ability and their lambs' postweaning traits in Tsigai breed[J].Arch Tierz, 2010, 53(4):465-474. |
[29] | PAJOR F, KOVÁCS A, TÖZSÉR J, et al.The influence of temperament on cortisol concentration and metabolic profile in Tsigai lambs[J].Arch Anim Breed, 2013, 56(1):573-580. |
[30] | GAVOJDIAN D, CZISZTER L T, BUDAI C, et al.Effects of behavioral reactivity on production and reproduction traits in Dorper sheep breed[J].J Vet Behav, 2015, 10(4):365-368. |
[31] | ZHANG J Y, QIAN S H, CHEN J H, et al.Calm Hu ram lambs assigned by temperament classification are healthier and have better meat quality than nervous Hu ram lambs[J].Meat Sci, 2021, 175:108436. |
[32] | MENGOLI M, PAGEAT P, LAFONT-LECUELLE C, et al.Influence of emotional balance during a learning and recall test in horses (Equus caballus)[J].Behav Processes, 2014, 106:141-150. |
[33] | FREYMOND S B, BRIEFER E F, ZOLLINGER A, et al.Behaviour of horses in a judgment bias test associated with positive or negative reinforcement[J].Appl Anim Behav Sci, 2014, 158:34-45. |
[34] | KONIGVON BORSTEL U, PASING S, GAULY M, et al.Status quo of the personality trait evaluation in horse breeding:judges' assessment of the situation and strategies for improvement[J].J Vet Behav, 2013, 8(5):326-334. |
[35] | SUWAŁA M, GÓRECKA-BRUZDA A, WALCZAK M, et al.A desired profile of horse personality-A survey study of Polish equestrians based on a new approach to equine temperament and character[J].Appl Anim Behav Sci, 2016, 180:65-77. |
[36] | LEE G, YOON M.Association of plasma concentrations of oxytocin, vasopressin, and serotonin with docility and friendliness of horses[J].Dom Anim Endocrinol, 2021, 74:106482. |
[37] | SIGURDARDÓTTIR H, ALBERTSDÓTTIR E, ERIKSSON S.Analysis of new temperament traits to better understand the trait spirit assessed in breeding field tests for Icelandic horses[J].Acta Agric Scand, Sect A-Anim Sci, 2017, 67(1-2):46-57. |
[38] | OLSEN H F, KLEMETSDAL G.Validation of a temperament test in the Norwegian horse breeds[J].Appl Anim Behav Sci, 2019, 219:104836. |
[39] | WELLER J E, TURNER S P, FUTRO A, et al.The influence of early life socialisation on cognition in the domestic pig (Suss crofa domestica)[J].Sci Rep, 2020, 10(1):19077. |
[40] | D'EATH R B, ORMANDY E, LAWRENCE A B, et al.Resident-intruder trait aggression is associated with differences in lysine vasopressin and serotonin receptor 1a (5-HT1A) mRNA expression in the brain of pre-pubertal female domestic pigs (Sus scrofa)[J]. J Neuroendocrinol, 2005, 17(10):679-686. |
[41] | YODER C L, MALTECCA C, CASSADY J P, et al.Breed differences in pig temperament scores during a performance test and their phenotypic relationship with performance[J].Livest Sci, 2011, 136(2-3):93-101. |
[42] | RAULT J L.Effects of positive and negative human contacts and intranasal oxytocin on cerebrospinal fluid oxytocin[J]. Psychoneuroendocrinol, 2016, 69:60-66. |
[43] | CHUPEL M U, MINUZZI L G, FURTADO G, et al.Exercise and taurine in inflammation, cognition, and peripheral markers of blood-brain barrier integrity in older women[J].Appl Physiol Nutr Metab, 2018, 43(7):733-741. |
[44] | TAKECHI R, LAMV, BROOK E, et al.Blood-brain barrier dysfunction precedes cognitive decline and neurodegeneration in diabetic insulin resistant mouse model:an implication for causal link[J].Front Aging Neuro Sci, 2017, 9:399. |
[45] | GENG J L, WANG L P, ZHANG L Y, et al.Blood-brain barrier disruption induced cognitive impairment is associated with increase of inflammatory cytokine[J].Front Aging Neurosci, 2018, 10:129. |
[46] | BOGUSH M, HELDT N A, PERSIDSKY Y.Blood brain barrier injury in diabetes:unrecognized effects on brain and cognition[J].J Neuroimmune Pharmacol, 2017, 12:593-601. |
[47] | ALTABAS V, ALTABAS K, KIRIGIN L.Endothelial progenitor cells (EPCs) in ageing and age-related diseases:how currently available treatment modalities affect EPC biology, atherosclerosis, and cardiovascular outcomes[J].Mech Ageing Dev, 2016, 159:49-62. |
[48] | ZHANG S S, ZHI Y L, LI F, et al.Transplantation of in vitro cultured endothelial progenitor cells repairs the blood-brain barrier and improves cognitive function of APP/PS1 transgenic AD mice[J].J Neurol Sci, 2018, 387:6-15. |
[49] | ZHU Y, WANG Y M, JIA Y C, et al.Roxadustat promotes angiogenesis through HIF-1α/VEGF/VEGFR2 signaling and accelerates cutaneous wound healing in diabetic rats[J].Wound Rep Reg, 2019, 27(4):324-334. |
[50] | QIU X Y, XIAO X, LI N, et al.Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases[J]. Prog Neuro-Psychopharmacol Biol Psychiatry, 2016, 72:60-72. |
[51] | BARCO A, MARIE H.Genetic approaches to investigate the role of CREB in neuronal plasticity and memory[J].Mol Neurobiol, 2011, 44(3):330-349. |
[52] | CHEN Z X, RIGGS A D.DNA methylation and demethylation in mammals[J].J Biol Chem, 2011, 286(21):18347-18353. |
[53] | FLITTON M, RIELLY N, WARMAN R, et al.Interaction of nutrition and genetics via DNMT3L-mediated DNA methylation determines cognitive decline[J].Neurobiol Aging, 2019, 78:64-73. |
[54] | IZQUIERDO V, PALOMERA-ÁVALOS V, LÓPEZ-RUIZ S, et al.Maternal resveratrol supplementation prevents cognitive decline in senescent mice offspring[J].Int J Mol Sci, 2019, 20(5):1134. |
[55] | CLEMENS A W, GABEL H W.Emerging insights into the distinctive neuronal methylome[J].Trends Genet, 2020, 36(11):816-832. |
[56] | GRIÑÁN-FERRÉ C, MARSAL-GARCÍA L, BELLVER-SANCHIS A, et al.Pharmacological inhibition of G9a/GLP restores cognition and reduces oxidative stress, neuroinflammation and β-Amyloid plaques in an early-onset Alzheimer's disease mouse model[J].Aging, 2019, 11(23):11591-11608. |
[57] | YANG C X, BAO F, ZHONG J, et al.The inhibitory effects of class I histone deacetylases on hippocampal neuroinflammatory regulation in aging mice with postoperative cognitive dysfunction[J].Eur Rev Med Pharmacol Sci, 2020, 24(19):10194-10202. |
[58] | QIU X Y, YOU H H, XIAO X, et al.Effects of trichostatin A and PXD101 on the in vitro development of mouse somatic cell nuclear transfer embryos[J].Cell Reprogram, 2017, 19(1):1-9. |
[59] | RYU Y K, PARK H Y, GO J, et al.Sodium phenylbutyrate reduces repetitive self-grooming behavior and rescues social and cognitive deficits in mouse models of autism[J].Psychopharmacology, 2021, 238(7):1833-1845. |
[60] | GAO Y, YA B L, LI X J, et al.Myricitrin ameliorates cognitive deficits in MCAO cerebral stroke rats via histone acetylation-induced alterations of brain-derived neurotrophic factor[J].Mol Cell Biochem, 2021, 476(2):609-617. |
[61] | OKADO H.Nervous system regulated by POZ domain Krüppel-like zinc finger (POK) family transcription repressor RP58[J].Br J Pharmacol, 2021, 178(4):813-826. |
[62] | CATANESI M, D'ANGELO M, TUPONE M G, et al.MicroRNAs dysregulation and mitochondrial dysfunction in neurodegenerative diseases[J].Int J Mol Sci, 2020, 21(17):5986. |
[63] | LIU X, ZHANG R L, WU Z M, et al.miR1345p/Foxp2/Syn1 is involved in cognitive impairment in an early vascular Dementia rat model[J].Int J Mol Med, 2019, 44(5):1729-1740. |
[64] | WU Q B, YUAN X C, BAI J, et al.MicroRNA-181a protects against pericyte apoptosis via directly targeting FOXO1:implication for ameliorated cognitive deficits in APP/PS1 mice[J].Aging, 2019, 11(16):6120-6133. |
[65] | SUN L Q, ZHAO M M, ZHANG J B, et al.MiR-144 promotes β-amyloid accumulation-induced cognitive impairments by targeting ADAM10 following traumatic brain injury[J].Oncotarget, 2017, 8(35):59181-59203. |
[66] | TANG C Z, YANG J T, LIU Q H, et al.Up-regulated miR-192-5p expression rescues cognitive impairment and restores neural function in mice with depression via the Fbln2-mediated TGF-β1 signaling pathway[J]. FASEB J, 2019, 33(1):606-618. |
[67] | CUNNANE S C, TRUSHINA E, MORLAND C, et al.Brain energy rescue:an emerging therapeutic concept for neurodegenerative disorders of ageing[J].Nat Rev Drug Discov, 2020, 19(9):609-633. |
[68] | ESPARZA-MOLTÓ P B, ROMERO-CARRAMIÑANA I, NÚÑEZ DE ARENAS C, et al.Generation of mitochondrial reactive oxygen species is controlled by ATPase inhibitory factor 1 and regulates cognition[J]. PLoS Biol, 2021, 19(5):e3001252. |
[69] | DIAZ-JUAREZ J, SUAREZ J A, DILLMANN W H, et al.Mitochondrial calcium handling and heart disease in diabetes mellitus[J].Biochim Biophys Acta Mol Basis Dis, 2021, 1867(1):165984. |
[70] | TANWAR J, SINGH J B, MOTIANI R K.Molecular machinery regulating mitochondrial calcium levels:thenuts and bolts of mitochondrial calcium dynamics[J].Mitochondrion, 2021, 57:9-22. |
[71] | KOSTIC M, SEKLER I.Functional properties and mode of regulation of the mitochondrial Na+/Ca2+exchanger, NCLX[J]. Semin Cell Dev Biol, 2019, 94:59-65. |
[72] | ZHANG W W, WEN J X, JIANG Y X, et al.L-Borneol ameliorates cerebral ischaemia by downregulating the mitochondrial calcium uniporter-induced apoptosis cascade in pMCAO rats[J].J Pharm Pharmacol, 2021, 73(2):272-280. |
[73] | CALVO-RODRIGUEZ M, HOU S S, SNYDERA C, et al.Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer's disease[J].Nat Commun, 2020, 11:2146. |
[74] | FROSS S, MANSEL C, MCCORMICK M, et al.Tributyltinalters calcium levels, mitochondrial dynamics, and activates calpains within dorsal root ganglion neurons[J].Toxicol Sci, 2021, 180(2):342-355. |
[75] | STANGA S, CARETTO A, BOIDOM, et al.Mitochondrial dysfunctions:a red thread across neurodegenerative diseases[J].Int J Mol Sci, 2020, 21(10):3719. |
[76] | YU R, JIN S B, LENDAHL U, et al.Human Fis1 regulates mitochondrial dynamics through inhibition of the fusion machinery[J]. EMBO J, 2019, 38(8):e99748. |
[77] | DUBOFF B, GÖTZ J, FEANY M.Tau promotes neurodegenerationvia DRP1 mislocalization in vivo[J]. Neuron, 2012, 75(4):618-632. |
[78] | CAI Q, JEONG Y Y.Mitophagy in Alzheimer's disease and other age-related neurodegenerative diseases[J]. Cells, 2020, 9(1):150. |
[79] | CHAN N C, SALAZAR A M, PHAM A H, et al.Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy[J].Hum Mol Genet, 2011, 20(9):1726-1737. |
[80] | LEE J J, SANCHEZ-MARTINEZ A, ZARATE A M, et al.Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin[J].J Cell Biol, 2018, 217(5):1613-1622. |
[1] | 钟朱夏, 胡修忠, 向敏, 余婕, 刘辰晖, 赵胜兰, 万平民, 王定发, 周源, 程蕾. 妊娠相关糖蛋白的生物学功能及其在畜牧生产中的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 874-881. |
[2] | 戴伶俐, 刘在霞, 郭丽丽, 杨彦达, 常晨城, 王宇, 石彩霞, 王玉珍, 张文广. β-羟丁酸介导的表观遗传修饰及其调节炎症反应分子机制研究进展[J]. 畜牧兽医学报, 2023, 54(10): 4095-4104. |
[3] | 孙浩, 者小书, 张文奇, 郝斐, 李文楠, 刘洁, 刘东军. 毛壳素对绒山羊ADSCs组蛋白甲基化修饰的影响研究[J]. 畜牧兽医学报, 2022, 53(7): 2380-2389. |
[4] | 甘麦邻, 杨大洪, 谭娅, 杨琼, 蒲红州, 张顺华, 朱砺. 环境因素引起的哺乳动物跨代DNA甲基化修饰现象[J]. 畜牧兽医学报, 2017, 48(12): 2225-2231. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||