畜牧兽医学报 ›› 2022, Vol. 53 ›› Issue (7): 2057-2065.doi: 10.11843/j.issn.0366-6964.2022.07.003
王翠月1,2, 李明睿3, 高玉时1, 陈大伟1*
收稿日期:
2021-10-14
出版日期:
2022-07-23
发布日期:
2022-07-23
通讯作者:
陈大伟,主要从事动物营养代谢病与中毒病及禽产品质量安全研究,E-mail:ydcdw83@sina.com
作者简介:
王翠月(1995-),女,山东滨州人,硕士生,主要从事动物营养代谢病与中毒病研究,E-mail:3232642737@qq.com
基金资助:
WANG Cuiyue1,2, LI Mingrui3, GAO Yushi1, CHEN Dawei1*
Received:
2021-10-14
Online:
2022-07-23
Published:
2022-07-23
摘要: 肉鸡骨骼发育主要是通过软骨内骨化完成的。在软骨内骨化的进程中,生长板软骨细胞经历增殖、肥大、转分化和软骨基质矿化等,最终成骨逐渐取代软骨原基,实现骨骼的线性延长。软骨内成骨是一个复杂精密的过程,由SOX9、RUNX2、MEF2C、OSX、TGF-β、BMP2、FGFs、IHH和PTHrP等多种信号因子和转录因子协调调控,这些调控因子由生长板不同区的软骨细胞表达或特异性的调控软骨细胞的增殖、分化及血管侵入等过程。在家禽养殖中,肉鸡常发腿病且治疗难度大,而有关肉鸡腿病发病机制的研究报道相对较少。本文综述了骨形成过程及具体的分子调控机制,为了解肉鸡腿病的发生以及提供有效治疗方案提供参考。
中图分类号:
王翠月, 李明睿, 高玉时, 陈大伟. 肉鸡骨骼发育的调控机制[J]. 畜牧兽医学报, 2022, 53(7): 2057-2065.
WANG Cuiyue, LI Mingrui, GAO Yushi, CHEN Dawei. Regulation Mechanism of Bone Development in Broilers[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2057-2065.
[1] | HUANG S C,KONG A A,CAO Q Q,et al.The role of blood vessels in broiler chickens with tibial dyschondroplasia[J].Poult Sci,2019,98(12):6527-6532. |
[2] | GUO Y P,TANG H H,WANG X N,et al.Clinical assessment of growth performance,bone morphometry,bone quality,and serum indicators in broilers affected by valgus-varus deformity[J].Poult Sci,2019,98(10):4433-4440. |
[3] | LIU K P,FAN R B,ZHOU Z L.Endoplasmic reticulum stress,chondrocyte apoptosis and oxidative stress in cartilage of broilers affected by spontaneous femoral head necrosis[J].Poult Sci,2021,100(8):101258. |
[4] | BLUMER M J F.Bone tissue and histological and molecular events during development of the long bones[J].Ann Anat,2021,235:151704. |
[5] | TATA Z,MERCERON C,SCHIPANI E.Fetal growth plate cartilage:histological and immunohistochemical techniques[M]//HAQQI T M,LEFEBVRE V.Chondrocytes:Methods and Protocols.New York:Humana,2021:53-84. |
[6] | KOYAMA E,MUNDY C,SAUNDERS C,et al.Premature growth plate closure caused by a hedgehog cancer drug is preventable by co-administration of a retinoid antagonist in mice[J].J Bone Miner Res,2021,36(7):1387-1402. |
[7] | LUI J C.Home for a rest:Stem cell niche of the postnatal growth plate[J].J Endocrinol,2020,246(1):R1-R11. |
[8] | ROLIAN C.Endochondral ossification and the evolution of limb proportions[J].Wiley Interdiscip Rev Dev Biol,2020,9(4):e373. |
[9] | MEHMOOD K,ZHANG H,JIANG X,et al.Ligustrazine recovers thiram-induced tibial dyschondroplasia in chickens:Involvement of new molecules modulating integrin beta 3[J].Ecotoxicol Environ Saf,2019,168:205-211. |
[10] | ZHANG H,MEHMOOD K,JIANG X,et al.Effect of tetramethyl thiuram disulfide (thiram) in relation to tibial dyschondroplasia in chickens[J].Environ Sci Pollut Res,2018,25(28):28264-28274. |
[11] | WANG J,WANG Z Y,WANG Z J,et al.Effects of manganese deficiency on chondrocyte development in tibia growth plate of Arbor Acres chicks[J].J Bone Miner Metab,2015,33(1):23-29. |
[12] | KOZHEMYAKINA E,LASSAR A B,ZELZER E.A pathway to bone:Signaling molecules and transcription factors involved in chondrocyte development and maturation[J].Development,2015,142(5):817-831. |
[13] | LEFEBVRE V.Toward understanding the functions of the two highly related Sox5 and Sox6 genes[J].J Bone Miner Metab,2002,20(3):121-130. |
[14] | JIANG X,LI A Y,WANG Y P,et al.Ameliorative effect of naringin against thiram-induced tibial dyschondroplasia in broiler chicken[J].Environ Sci Pollut Res,2020,27(10):11337-11348. |
[15] | YAO W Y,ZHANG H,JIANG X,et al.Effect of total flavonoids of Rhizoma drynariae on tibial dyschondroplasia by regulating BMP-2 and runx2 expression in chickens[J].Front Pharmacol,2018,9:1251. |
[16] | WANG C Y,XIA W H,WANG L,et al.Manganese deficiency induces avian tibial dyschondroplasia by inhibiting chondrocyte proliferation and differentiation[J].Res Vet Sci,2021,140:164-170. |
[17] | DE OLIVEIRA H C,IBELLI A M G,GUIMARÃES S E F,et al.RNA-seq reveals downregulated osteochondral genes potentially related to tibia bacterial chondronecrosis with osteomyelitis in broilers[J].BMC Genet,2020,21(1):58. |
[18] | LEUNG V Y L,GAO B,LEUNG K K H,et al.SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression[J].PLoS Genet,2011,7(11):e1002356. |
[19] | LEFEBVRE V,ANGELOZZI M,HASEEB A.SOX9 in cartilage development and disease[J].Curr Opin Cell Biol,2019,61:39-47. |
[20] | CHENG A X,GENEVER P G.SOX9 determines RUNX2 transactivity by directing intracellular degradation[J].J Bone Miner Res,2010,25(12):2680-2689. |
[21] | DY P,WANG W H,BHATTARAM P,et al.Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes[J].Dev Cell,2012,22(3):597-609. |
[22] | KOMORI T.Runx2,an inducer of osteoblast and chondrocyte differentiation[J].Histochem Cell Biol,2018,149(4):313-323. |
[23] | QIN X,JIANG Q,NAGANO K,et al.Runx2 is essential for the transdifferentiation of chondrocytes into osteoblasts[J].PLoS Genet,2020,16(11):e1009169. |
[24] | CHEN H Y,GHORI-JAVED F Y,RASHID H,et al.Runx2 regulates endochondral ossification through control of chondrocyte proliferation and differentiation[J].J Bone Miner Res,2014,29(12):2653-2665. |
[25] | LAURIE L E,KOKUBO H,NAKAMURA M,et al.The transcription factor hand1 is involved in Runx2-Ihh-regulated endochondral ossification[J].PLoS One,2016,11(2):e0150263. |
[26] | ARNOLD M A,KIM Y,CZUBRYT M P,et al.MEF2C transcription factor controls chondrocyte hypertrophy and bone development[J].Dev Cell,2007,12(3):377-389. |
[27] | TAN Z J,NIU B,TSANG K Y,et al.Synergistic co-regulation and competition by a SOX9-GLI-FOXA phasic transcriptional network coordinate chondrocyte differentiation transitions[J].PLoS Genet,2018,14(4):e1007346. |
[28] | IONESCU A,KOZHEMYAKINA E,NICOLAE C,et al.FoxA family members are crucial regulators of the hypertrophic chondrocyte differentiation program[J].Dev Cell,2012,22(5):927-939. |
[29] | CONNELLY Z M,JIN R J,ZHANG J H,et al.FOXA2 promotes prostate cancer growth in the bone[J].Am J Transl Res,2020,12(9):5619-5629. |
[30] | NISHIMURA R,WAKABAYASHI M,HATA K,et al.Osterix regulates calcification and degradation of chondrogenic matrices through matrix metalloproteinase 13(MMP13) expression in association with transcription factor Runx2 during endochondral ossification[J].J Biol Chem,2012,287(40):33179-33190. |
[31] | NAKASHIMA K,ZHOU X,KUNKEL G,et al.The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation[J].Cell,2002,108(1):17-29. |
[32] | HAN Y,KIM Y M,KIM H S,et al.Melatonin promotes osteoblast differentiation by regulating osterix protein stability and expression[J].Sci Rep,2017,7(1):5716. |
[33] | AMARILIO R,VIUKOV S V,SHARIR A,et al.HIF1α regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis[J].Development,2007,134(21):3917-3928. |
[34] | MA L,YANG Z Q,DING J L,et al.Function and regulation of transforming growth factor β1 signalling in antler chondrocyte proliferation and differentiation[J].Cell Prolif,2019,52(4):e12637. |
[35] | KANG J S,ALLISTON T,DELSTON R,et al.Repression of Runx2 function by TGF-β through recruitment of class II histone deacetylases by Smad3[J].EMBO J,2005,24(14):2543-2555. |
[36] | HORITA M,NISHIDA K,HASEI J,et al.Involvement of ADAM12 in chondrocyte differentiation by regulation of TGF-β1-induced IGF-1 and RUNX-2 expressions[J].Calcif Tissue Int,2019,105(1):97-106. |
[37] | YODTHONG T,KEDJARUNE-LEGGAT U,SMYTHE C,et al.Enhancing activity of Pleurotus sajor-caju (Fr.) sing β-1,3-glucanoligosaccharide (Ps-GOS) on proliferation,differentiation,and mineralization of MC3T3-E1 cells through the involvement of BMP-2/Runx2/MAPK/Wnt/β-catenin signaling pathway[J].Biomolecules,2020,10(2):190. |
[38] | YOON B S,POGUE R,OVCHINNIKOV D A,et al.BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways[J].Development,2006,133(23):4667-4678. |
[39] | NISHIMURA R,HATA K,MATSUBARA T,et al.Regulation of bone and cartilage development by network between BMP signalling and transcription factors[J].J Biochem,2012,151(3):247-254. |
[40] | KARUPPAIAH K,YU K,LIM J,et al.FGF signaling in the osteoprogenitor lineage non-autonomously regulates postnatal chondrocyte proliferation and skeletal growth[J].Development,2016,143(10):1811-1822. |
[41] | WANG Y,YANG T,LIU Y D,et al.Decrease of miR-195 promotes chondrocytes proliferation and maintenance of chondrogenic phenotype via targeting FGF-18 pathway[J].Int J Mol Sci,2017,18(5):975. |
[42] | KREJCI P,MASRI B,FONTAINE V,et al.Interaction of fibroblast growth factor and C-natriuretic peptide signaling in regulation of chondrocyte proliferation and extracellular matrix homeostasis[J].J Cell Sci,2005,118(21):5089-5100. |
[43] | CINQUE L,FORRESTER A,BARTOLOMEO R,et al.FGF signalling regulates bone growth through autophagy[J].Nature,2015,528(7581):272-275. |
[44] | OHBA S.Hedgehog signaling in skeletal development:Roles of Indian hedgehog and the mode of its action[J].Int J Mol Sci,2020,21(18):6665. |
[45] | DENG A,ZHANG H Q,HU M Y,et al.The inhibitory roles of Ihh downregulation on chondrocyte growth and differentiation[J].Exp Ther Med,2018,15(1):789-794. |
[46] | ST-JACQUES B,HAMMERSCHMIDT M,MCMAHON A P.Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation[J].Genes Dev,1999,13(16):2072-2086. |
[47] | MARTIN T J.Parathyroid hormone-related protein,its regulation of cartilage and bone development,and role in treating bone diseases[J].Physiol Rev,2016,96(3):831-871. |
[48] | KARAPLIS A C,KRONENBERG H M.Physiological roles for parathyroid hormone-related protein:lessons from gene knockout mice[J].Vitam Horm,1996,52:177-193. |
[49] | HAN X S,ZHUANG Y F,ZHANG Z H,et al.Regulatory mechanisms of the Ihh/PTHrP signaling pathway in fibrochondrocytes in entheses of pig Achilles tendon[J].Stem Cells Int,2016,2016:8235172. |
[50] | PEAKE N J,HOBBS A J,PINGGUAN-MURPHY B,et al.Role of C-type natriuretic peptide signalling in maintaining cartilage and bone function[J].Osteoarthritis Cartilage,2014,22(11):1800-1807. |
[51] | FUJII T,HIROTA K,YASODA A,et al.Rats deficient C-type natriuretic peptide suffer from impaired skeletal growth without early death[J].PLoS One,2018,13(3):e0194812. |
[52] | LORGET F,KACI N,PENG J,et al.Evaluation of the therapeutic potential of a CNP analog in a Fgfr3 mouse model recapitulating achondroplasia[J].Am J Hum Genet,2012,91(6):1108-1114. |
[53] | CHUA K,LEE V K,CHAN C,et al.Hematopoietic wnts modulate endochondral ossification during fracture healing[J].Front Endocrinol,2021,12:667480. |
[54] | KOBAYASHI Y,UEHARA S,UDAGAWA N,et al.Regulation of bone metabolism by Wnt signals[J].J Biochem),2016,159(4):387-392. |
[55] | DIEDERICHS S,TONNIER V,MÄRZ M,et al.Regulation of WNT5A and WNT11 during MSC in vitro chondrogenesis:WNT inhibition lowers BMP and hedgehog activity,and reduces hypertrophy[J].Cell Mol Life Sci,2019,76(19):3875-3889. |
[56] | LIU S,ZHANG E J,YANG M L,et al.Overexpression of Wnt11 promotes chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in synergism with TGF-β[J].Mol Cell Biochem,2014,390(1-2):123-131. |
[57] | ZHANG H,MEHMOOD K,LI K,et al.Icariin ameliorate thiram-induced tibial dyschondroplasia via regulation of WNT4 and VEGF expression in broiler chickens[J].Front Pharmacol,2018,9:123. |
[58] | DUAN X,MURATA Y,LIU Y,et al.Vegfa regulates perichondrial vascularity and osteoblast differentiation in bone development[J].Development,2015,142(11):1984-1991. |
[59] | DIOMEDE F,MARCONI G D,FONTICOLI L,et al.Functional relationship between osteogenesis and angiogenesis in tissue regeneration[J].Int J Mol Sci,2020,21(9):3242. |
[60] | ZELZER E,MAMLUK R,FERRARA N,et al.VEGFA is necessary for chondrocyte survival during bone development[J].Development,2004,131(9):2161-2171. |
[61] | HUANG S C,LI L,REHMAN M U,et al.Tibial growth plate vascularization is inhibited by the dithiocarbamate pesticide thiram in chickens:potential relationship to peripheral platelet counts alteration[J].Environ Sci Pollut Res,2019,26(36):36322-36332. |
[62] | STEGEN S,LAPERRE K,EELEN G,et al.HIF-1α metabolically controls collagen synthesis and modification in chondrocytes[J].Nature,2019,565(7740):511-515. |
[63] | PFANDER D,CRAMER T,SCHIPANI E,et al.HIF-1α controls extracellular matrix synthesis by epiphyseal chondrocytes[J].J Cell Sci,2003,116(9):1819-1826. |
[64] | ZHOU N,HU N,LIAO J Y,et al.Hif-1α as a regulator of BMP2-induced chondrogenic differentiation,osteogenic differentiation,and endochondral ossification in stem cells[J].Cell Physiol Biochem,2015,36(1):44-60. |
[65] | SCHLEGEL W,HALBAUER D,RAIMANN A,et al.IGF expression patterns and regulation in growth plate chondrocytes[J].Mol Cell Endocrinol,2010,327(1-2):65-71. |
[66] | RICO-LLANOS G A,BECERRA J,VISSER R.Insulin-like growth factor-1(IGF-1) enhances the osteogenic activity of bone morphogenetic protein-6(BMP-6) in vitro and in vivo,and together have a stronger osteogenic effect than when IGF-1 is combined with BMP-2[J].J Biomed Mater Res Part A,2017,105(7):1867-1875. |
[67] | MELNIK S,GABLER J,DREHER S I,et al.miR-218 affects hypertrophic differentiation of human mesenchymal stromal cells during chondrogenesis via targeting RUNX2,MEF2C,and COL10A1[J].Stem Cell Res Ther,2020,11(1):532. |
[68] | OKA S,LI X Y,ZHANG F Z,et al.MicroRNA-21 facilitates osteoblast activity[J].Biochem Biophys Rep,2021,25:100894. |
[69] | ZHANG B Y,WANG C Y,ZHANG Y,et al.A CRISPR-engineered swine model of COL2A1 deficiency recapitulates altered early skeletal developmental defects in humans[J].Bone,2020,137:115450. |
[70] | ZHOU X P,MA C Y,HU B,et al.FoxA2 regulates the type II collagen-induced nucleus pulposus-like differentiation of adipose-derived stem cells by activation of the Shh signaling pathway[J].FASEB J,2018,32(12):6582-6595. |
[71] | INADA M,WANG Y M,BYRNE M H,et al.Critical roles for collagenase-3(Mmp13) in development of growth plate cartilage and in endochondral ossification[J].Proc Natl Acad Sci U S A,2004,101(49):17192-17197. |
[1] | 刘佳惠, 吴开开, 王磊, 张康, 韩松伟, 陈富斌, 徐国伟, 郭志廷, 古雪艳, 张景艳, 李建喜. 黄芪多糖、皂苷及益生菌复合物对感染大肠杆菌肉鸡肠道的保护作用[J]. 畜牧兽医学报, 2024, 55(5): 2241-2252. |
[2] | 刘媛, 李溪月, 张维娅. MMP14调控骨骼肌卫星细胞分化的分子机制研究[J]. 畜牧兽医学报, 2024, 55(4): 1592-1604. |
[3] | 梁淑怡, 李凡, 江青艳, 王松波. 脯氨酸羟化酶(PHDs)对动物骨骼肌发育和脂肪沉积的调控作用及其机制[J]. 畜牧兽医学报, 2024, 55(3): 867-873. |
[4] | 梁灿新, 郑小雪, 舒雪利, 周婉怡, 廖明, 曹伟胜. 与鸡内皮血管瘤病例相关的禽白血病病毒K亚群分离及其gp85基因演化分析[J]. 畜牧兽医学报, 2024, 55(3): 1127-1136. |
[5] | 刘新新, 周恩友, 安智远, 蔡春霞, 张露洁, 李建增, 李转见, 闫峰宾, 康相涛, 高延玲, 韩瑞丽. 不同来源外泌体对骨骼发育及骨骼疾病的影响[J]. 畜牧兽医学报, 2024, 55(2): 419-426. |
[6] | 宋明强, 解竞静, 欧娟, 王钰明, 侯嘉, 谭高明, 田凯, 朱云, 萨仁娜, 赵峰. 盐酸不溶灰分测定方法影响肉鸡饲粮代谢能准确性的比较研究[J]. 畜牧兽医学报, 2024, 55(2): 619-628. |
[7] | 王栋, 柳可欣, 何炎峻, 邓守翔, 刘云, 马卫明. 饲粮中添加腐殖酸钠对鼠伤寒沙门菌感染肉鸡肝组织炎症和抗氧化能力的影响[J]. 畜牧兽医学报, 2024, 55(2): 629-639. |
[8] | 邱文粤, 苏依曼, 叶嘉莉, 章心婷, 庞晓玥, 王荣梅, 谢子茂, 张辉, 唐兆新, 苏荣胜. 积雪草酸通过调控细胞凋亡和自噬缓解脂多糖诱导肉鸡急性肾损伤的研究[J]. 畜牧兽医学报, 2024, 55(2): 809-821. |
[9] | 唐鑫鑫, 郑炬梅, 骆娜, 营凡, 朱丹, 李森, 刘大伟, 安炳星, 文杰, 赵桂苹, 李和刚. 基于全基因组关联分析揭示肉鸡腿病发生的遗传机制[J]. 畜牧兽医学报, 2024, 55(1): 99-109. |
[10] | 苗舒, 安济山, 王祚, 肖定福, 兰欣怡, 刘磊, 沈维军, 万发春. 亮氨酸通过PI3K-AKT信号通路促进牛成肌细胞的增殖[J]. 畜牧兽医学报, 2024, 55(1): 142-152. |
[11] | 袁何玲, 方词, 黄金虎, 王晓明, 肖文浚, 刘睿婷, 史荣梅, 王丽平. 大蒜辣素对肉鸡肝组织中CYP1A2 mRNA表达及其酶动力学的影响[J]. 畜牧兽医学报, 2023, 54(9): 3905-3915. |
[12] | 王政, 郭文婕, 程瑾, 原一桐, 罗榕, 薛毅, 张利环, 朱芷葳, 李慧锋. 营养转运相关基因调控区多态性与黄羽肉鸡饲料转化率关联分析[J]. 畜牧兽医学报, 2023, 54(6): 2343-2352. |
[13] | 员佳乐, 刘畅, 黄晓宇, 刘巧霞, 史明月, 李文霞, 牛瑾, 王首元, 高鹏飞, 郭晓红, 李步高, 路畅, 曹果清. miR-145-5p靶向IGF1R介导AKT通路抑制猪骨骼肌卫星细胞增殖和分化[J]. 畜牧兽医学报, 2023, 54(5): 1893-1904. |
[14] | 白露, 王梦杰, 马小春, 何政肖, 孔富丽, 刘大伟, 营凡, 朱丹, 赵桂苹, 文杰, 刘冉冉. 鸡木质化胸肌组织学特征及分子调控通路改变研究[J]. 畜牧兽医学报, 2023, 54(5): 1915-1926. |
[15] | 闫威东, 王萍, 姜明君, 赵景鹏, 王晓鹃, 林海, 焦洪超. 植酸酶对日粮铜减量下肉鸡生产性能和Cu、Zn排泄量的影响[J]. 畜牧兽医学报, 2023, 54(4): 1535-1544. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||