畜牧兽医学报 ›› 2020, Vol. 51 ›› Issue (7): 1475-1487.doi: 10.11843/j.issn.0366-6964.2020.07.001
张天留, 高雪*, 徐凌洋, 陈燕, 张路培, 朱波, 高会江, 李俊雅*
收稿日期:
2020-02-18
出版日期:
2020-07-25
发布日期:
2020-07-22
通讯作者:
高雪,主要从事牛基因组学与基因组选择进化研究,E-mail:gaoxue76@126.com;李俊雅,主要从事牛遗传育种研究,E-mail:lijunya@caas.cn
作者简介:
张天留(1992-),男,河南嵩县人,博士生,主要从事牛功能基因组学和环境适应性进化研究,E-mail:zhangtianliu92@foxmail.com
基金资助:
ZHANG Tianliu, GAO Xue*, XU Lingyang, CHEN Yan, ZHANG Lupei, ZHU Bo, GAO Huijiang, LI Junya*
Received:
2020-02-18
Online:
2020-07-25
Published:
2020-07-22
摘要: 青藏高原环境主要体现为低氧低压、寒冷干燥、紫外线强、食物匮乏等,而高原家养动物经历了长期的选择和培育后能够生活在此环境下,其机体已经形成了独特的高原适应性特征。由于高原畜禽机体适应进化体系的复杂性,全面系统的适应性分子机制解析尚未完善。随着分子生物学和生物信息学的发展,高原家养动物基因组组装和功能注释完成,然后逐步开展了基因组、转录组和蛋白质组等组学层面的工作,挖掘到一系列高原动物环境适应性关键候选基因,为解析高原家养动物环境适应性分子机制研究提供了强有力支撑。本文以世居在青藏高原的藏鸡(Gallus gallus)、藏猪(Sus scrofa)、牦牛(Bos grunniens)、藏山羊(Capra hircus)、藏绵羊(Ovis aries)、藏马(Equus caballus)和藏獒(Canis lupus familiaris)等高原土著畜禽资源作为分类单元,分别从组织器官的解剖学结构、血液生理生化指标和分子遗传机制解析3个方面进行论述,并对高原适应性进化的研究趋势进行展望,以期为下一步培育高原高寒低氧地区新品种奠定基础。
中图分类号:
张天留, 高雪, 徐凌洋, 陈燕, 张路培, 朱波, 高会江, 李俊雅. 高原家养动物环境适应性的研究进展[J]. 畜牧兽医学报, 2020, 51(7): 1475-1487.
ZHANG Tianliu, GAO Xue, XU Lingyang, CHEN Yan, ZHANG Lupei, ZHU Bo, GAO Huijiang, LI Junya. Research Progress on Environment Adaptation of Plateau Domestic Animals[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7): 1475-1487.
[1] | BEALL C M.Two routes to functional adaptation:Tibetan and Andean high-altitude natives[J].Proc Natl Acad Sci U S A,2007,104(S1):8655-8660. |
[2] | XU Z X,GONG T L,LI J Y.Decadal trend of climate in the Tibetan Plateau-regional temperature and precipitation[J]. Hydrol Processes,2008,22(16):3056-3065. |
[3] | 何俊峰,余四九,崔燕.不同年龄高原牦牛肺脏的组织结构特征[J].畜牧兽医学报,2009,40(5):748-755.HE J F,YU S J,CUI Y.Characteristics of lung structure in different age plateau yak[J].Acta Veterinaria et Zootechnica Sinica,2009,40(5):748-755.(in Chinese) |
[4] | 许永华,张东辉,许琴,等.西藏小型猪心脏、呼吸系统组织学观察[J].中国比较医学杂志,2009,19(8):61-62.XU Y H,ZHANG D H,XU Q,et al.Histological observation of heart and respiratory system in Tibet Minipigs[J].Chinese Journal of Comparative Medicine,2009,19(8):61-62.(in Chinese) |
[5] | ANAND I S,HARRIS E,FERRARI R,et al.Pulmonary haemodynamics of the yak,cattle,and cross breeds at high altitude[J]. Thorax,1986,41(9):696-700. |
[6] | SONG S,YAO N,YANG M,et al.Exome sequencing reveals genetic differentiation due to high-altitude adaptation in the Tibetan cashmere goat (Capra hircus)[J].BMC Genomics,2016,17(1):122. |
[7] | 卢晓丽,赵彦玲,吴征王,等.西藏色瓦藏绵羊高原适应性的血液生理学特性研究[J].西南农业学报,2019,32(6):1443-1447.LU X L,ZHAO Y L,WU Z W,et al.Study on blood physiological characteristics of plateau adaptation in Tibetan sawa sheep[J].Southwest China Journal of Agricultural Sciences,2019,32(6):1443-1447.(in Chinese) |
[8] | WANG H F,WANG S S,ZHENG M,et al.Hypoxia promotes vasculogenic mimicry formation by vascular endothelial growth factor A mediating epithelial-mesenchymal transition in salivary adenoid cysticcarcinoma[J].Cell Proliferation, 2019, 52(3):e12600. |
[9] | BAUMANN F,BAUER M S,REES M,et al.Increasing evidence of mechanical force as a functional regulator in smooth muscle myosin light chain kinase[J].Elife,2017,6(11):e26473. |
[10] | WANG Y X,ZHENG Y M.ROS-dependent signaling mechanisms for hypoxic Ca2+ responses in pulmonary artery myocytes[J]. Antioxid Redox Signal,2010,12(5):611-623. |
[11] | ADHIKARI A S,TRIVEDI D V,SARKAR S S,et al.β-Cardiac myosin hypertrophic cardiomyopathy mutations release sequestered heads and increaseenzymatic activity[J].Nat Commun,2019,10(1):2685. |
[12] | CHANG Y W,LI L,ZHANG L P,et al.Plexin-B1 indirectly affects glioma invasiveness and angiogenesis by regulating the RhoA/αvβ3 signaling pathway and SRPK1[J].Tumor Biol,2016,37(8):11225-11236. |
[13] | TASHI T,READING N S,WUREN T,et al.Gain-of-function EGLN1 prolyl hydroxylase (PHD2 D4E:C127S) in combination with EPAS1(HIF-2α) polymorphism lowers hemoglobin concentration in Tibetan highlanders[J].J Mol Med,2017,95(6):665-670. |
[14] | WEIDEMANN A,JOHNSON R S.Biology of HIF-1α[J].Cell Death Differ,2008,15(4):621-627. |
[15] | SASAKI R,MASUDA S,NAGAO M.Pleiotropicfunctions and tissue-specific expression of erythropoietin[J].News Physiol Sci,2001,16:110-113. |
[16] | AGGARWAL S,NEGI S,JHA P,et al.EGLN1 involvement in high-altitude adaptation revealed through genetic analysis of extreme constitution types defined in Ayurveda[J].Proc Natl Acad Sci U S A,2010,107(44):18961-18966. |
[17] | ROVNY R,MARKO M,KATINA S,et al.Association between genetic variability of neuronal nitric oxide synthase and sensorimotor gating in humans[J].Nitric Oxide,2018,80:32-36. |
[18] | MATEJÁK M,KULHÁNEK T,MATOUČEK S.Adair-based hemoglobin equilibrium with oxygen,carbon dioxide and hydrogen ion activity[J].Scand J Clin Lab Invest,2015,75(2):113-120. |
[19] | ZHANG Q,GOU W Y,WANG X T,et al.Genome resequencing identifies unique adaptations of Tibetan chickens to hypoxia and high-dose ultraviolet radiation in high-altitude environments[J].Genome Biol Evol,2016,8(3):765-776. |
[20] | WANG M S,LI Y,PENG M S,et al.Genomic analyses reveal potential independent adaptation to high altitude in Tibetan chickens[J].Mol Biol Evol,2015,32(7):1880-1889. |
[21] | LI M Z,TIAN S L,JIN L,et al.Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars[J].Nat Genet,2013,45(12):1431-1438. |
[22] | QIU Q,WANG L Z,WANG K,et al.Yak whole-genome resequencing reveals domestication signaturesand prehistoric population expansions[J].Nat Commun,2015,6(1):10283. |
[23] | WEI C H,WANG H H,LIU G,et al.Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep[J].Sci Rep,2016,6(1):26770. |
[24] | LIU X X,ZHANG Y L,LI Y F,et al.EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses[J].Mol Biol Evol,2019,36(11):2591-2603. |
[25] | GOU X,WANG Z,LI N,et al.Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia[J].Genome Res,2014,24(8):1308-1315. |
[26] | 张浩,吴常信,强巴央宗,等.高海拔孵化鸡胚死亡曲线分析[J].中国农业大学学报,2005,10(4):109-114.ZHANG H,WU C X,CHAMBA Y Z,et al.Curve analysis of embryonic mortality in chickens incubation at high altitude[J]. Journal of China Agricultural University,2005,10(4):109-114.(in Chinese) |
[27] | 杜志强,曲鲁江,李显耀,等.藏鸡群体遗传多样性研究[J].遗传,2004,26(2):167-171.DU Z Q,QU L J,LI X Y,et al.Genetic diversity in Tibetan chicken[J].Hereditas,2004,26(2):167-171.(in Chinese) |
[28] | XIANG H,GAO J Q,YU B Q,et al.Early Holocene chicken domestication in northern China[J].Proc Natl Acad Sci U S A,2014,111(49):17564-17569. |
[29] | ZHANG H,WU C X,CHAMBA Y,et al.Blood characteristics for high altitude adaptation in Tibetan chickens[J].Poult Sci, 2007, 86(7):1384-1389. |
[30] | ZHANG H,WANG X T,CHAMBA Y,et al.Inf-luencesof hypoxia on hatching performance in chickens with different genetic adaptation to high altitude[J].Poult Sci,2008,87(10):2112-2116. |
[31] | WEI Z H,ZHANG H,JIA C L,et al.Blood gas,hemoglobin,and growth of Tibetan chicken embryos incubated at high altitude[J]. Poult Sci,2007,86(5):904-908. |
[32] | ZHANG Y W,GOU W Y,ZHANG Y,et al.Insights into hypoxic adaptation in Tibetan chicken embryos from comparative proteomics[J].Comp BiochemPhysiol Part D Genomics Proteomics,2019,31:100602. |
[33] | LIU Y P,SHENG L,MA M H,et al.Proteome-based identification of chicken egg yolk proteins associated with antioxidant activity on the Qinghai-Tibetan Plateau[J].Int J Biol Macromol,2020,150:1093-1103. |
[34] | ZHANG Z R,DU H R,BAI L J,et al.Whole genome bisulfite sequencing reveals unique adaptations to high-altitude environments in Tibetan chickens[J].PLoS One,2018,13(3):e0193597. |
[35] | CHENG P.Livestock breeds of China[R].Food and Agriculture Organization of the United Nations,1985. |
[36] | 周琳,王蜀金.藏猪生理学研究进展[J].家畜生态学报,2014,35(7):7-12.ZHOU L,WANG S J.Research progress on Tibetan swine physiology[J].Acta Ecologae Animalis Domastici,2014, 35(7):7-12.(in Chinese) |
[37] | 强巴央宗,张浩,白玛央宗,等.高原环境中藏猪血液生理指标测定与比较[J].西南农业学报,2011,24(6):2382-2384.CHAMBA Y Z,ZHANG H,BAINA Y Z,et al.Determinationof blood physiological parameters in Tibet pig at high altitude[J]. Southwest China Journal of Agricultural Sciences,2011,24(6):2382-2384.(in Chinese) |
[38] | AI H,HUANG L,REN J.Genetic diversity,linkage disequilibrium and selection signatures in Chinese and Western pigs revealed by genome-wide SNP markers[J].PLoS One,2013,8(2):e56001. |
[39] | PHAM C G,BUBICI C,ZAZZERONI F,et al.Ferritin heavy chain upregulation by NF-κB inhibits TNFα-induced apoptosis by suppressing reactive oxygen species[J].Cell,2004,119(4):529-542. |
[40] | AI H S,YANG B,LI J,et al.Population history and genomic signatures for high-altitude adaptation in Tibetan pigs[J].BMC Genomics,2014,15(1):834. |
[41] | ZHANG B,QIANGBA Y Z,SHANG P,et al.Gene expression of vascular endothelial growth factor A and hypoxic adaptation in Tibetan pig[J].J Anim Sci Biotechnol,2016,7(1):21. |
[42] | ZHANG B,CHAMBA Y,SHANG P,et al.Comparative transcriptomic and proteomic analyses provide insights into the key genes involved in high-altitude adaptation in the Tibetan pig[J].Sci Rep,2017,7(1):3654. |
[43] | JIA C L,KONG X Y,KOLTES J E,et al.Genecoexpression network analysis unraveling transcriptional regulation of high-altitude adaptation of Tibetan pig[J].PLoS One,2016,11(12):e0168161. |
[44] | 魏青,俞红贤.180日龄高原牦牛和平原黄牛肺泡组织结构的比较研究[J].青海大学学报:自然科学版,2008,26(4):36-39.WEI Q,YU H X.Comparison of histological structure of pulmonary alveoli between 180 days old yak and plain cattle[J]. Journal of Qinghai University:Nature Science,2008,26(4):36-39.(in Chinese) |
[45] | DING X Z,LIANG C N,GUO X,et al.Physiological insight into the high-altitude adaptations in domesticated yaks(Bos grunniens) along the Qinghai-Tibetan Plateau altitudinal gradient[J].Livestock Sci,2014,162:233-239. |
[46] | QIU Q,ZHANG G J,MA T,et al.The yak genome and adaptation to life at high altitude[J].Nat Genet,2012,44(8):946-949. |
[47] | CHEN N B,CAI Y D,CHEN Q M,et al.Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia[J].Nat Commun,2018,9(1):2337. |
[48] | WU D D,DING X D,WANG S,et al.Pervasive introgression facilitated domestication and adaptation in the Bos species complex[J].Nat Ecol Evol,2018,2(7):1139-1145. |
[49] | ZHANG X,WANG K,WANG L Z,et al.Genome-wide patterns of copy number variation in the Chinese yak genome[J].BMC Genomics,2016,17(1):379. |
[50] | QI X B,ZHANG Q,HE Y X,et al.The transcriptomic landscape of yaks reveals molecular pathways for high altitude adaptation[J].Genome Biol Evol,2019,11(1):72-85. |
[51] | XIN J W,CHAI Z X,ZHANG C F,et al.Transcriptome profiles revealed the mechanisms underlying the adaptation of yak to high-altitude environments[J].Sci Rep,2019,9(1):7558. |
[52] | GUAN J Q,LONG K,MA J D,et al.Comparative analysis of the microRNA transcriptome between yak and cattle provides insight into high-altitude adaptation[J].PeerJ,2017,5:e3959. |
[53] | XIONG X R,FU M,LAN D L,et al.Yak response to high-altitude hypoxic stress by altering mRNA expression and DNA methylation of hypoxia-inducible factors[J].Anim Biotechnol,2015,26(3):222-229. |
[54] | 江家椿,何玛利,嘎玛仁增,等.不同海拔高度西藏高原山羊若干血液生理特性的对比分析[J].西南农业学报,1992,5(1):79-83.JIANG J C,HE M L,GAMA R Z,et al.Comparison on several hematological values of goats in tibet plateau at different altitude[J].Southwest China Journal of Agricultural Sciences,1992,5(1):79-83.(in Chinese) |
[55] | 欧阳熙,王杰,王永,等.藏山羊血液生理、生化指标的季节性变化[J].西南民族学院学报:自然科学版,1992,18(3):284-288.OUYANG X,WANG J,WANG Y,et al.Seasonal variety of blood physiological and biochemical targets of Tibetan Goat[J]. Journal of SouthwestNationalities College:Natural Science,1992,18(3):284-288.(in Chinese) |
[56] | DONG Y,XIE M,JIANG Y,et al.Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus)[J].Nat Biotechnol,2013,31(2):135-141. |
[57] | DONG Y,ZHANG X L,XIE M,et al.Reference genome of wild goat (Capra aegagrus) and sequencing of goat breeds provide insight into genic basis ofgoat domestication[J].BMC Genomics,2015,16(1):431. |
[58] | ZHANG W P,FAN Z X,HAN E,et al.Hypoxia adaptations in the grey wolf (Canis lupus chanco) fromQinghai-Tibet Plateau[J].PLoS Genet,2014,10(7):e1004466. |
[59] | LORENZO F R,HUFF C,MYLLYMÄKI M,et al.A genetic mechanism for Tibetan high-altitude adaptation[J].Nat Genet, 2014,46(9):951-956. |
[60] | WANG X L,LIU J,ZHOU G X,et al.Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits[J].Sci Rep,2016,6:38932. |
[61] | GUO J Z,TAO H X,LI P F,et al.Whole-genome sequencing reveals selection signatures associated with important traits in six goat breeds[J].Sci Rep,2018,8(1):10405. |
[62] | DENG J,FENG J,LI L,et al.Polymorphisms,diffe-rentiation,and phylogeny of 10 Tibetan goat populations inferred from mitochondrial D-loop sequences[J].Mitochondrial DNA Part A,2018,29(3):439-445. |
[63] | LI X Y,WANG Y,GUO J Z,et al.Identification and expression patterns of adipokine genes during adipocyte differentiation in the Tibetan goat (Capra hircus)[J].Gene,2018,643:17-25. |
[64] | WEI C H,WANG H H,LIU G,et al.Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds[J].BMC Genomics,2015,16(1):194. |
[65] | YANG J,LI W R,LV F H,et al.Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments[J].Mol Biol Evol,2016,33(10):2576-2592. |
[66] | HU X J,YANG J,XIE X L,et al.The genome landscape of Tibetan sheep reveals adaptive introgression from argali and the history of early human settlements on the Qinghai-Tibetan Plateau[J].Mol Bio.Evol,2018,36(2):283-303. |
[67] | WANG W M,ZHANG X X,ZHOU X,et al.Deep genome resequencing reveals artificial and natural selection for visual deterioration,plateau adaptability and high prolificacy in Chinese domestic sheep[J].Front Genet,2019,10:300. |
[68] | 赵雪,魏雪锋,连林生,等.藏马低氧适应的血液生理指标研究[J].云南农业大学学报,2014,29(5):684-688.ZHAO X,WEI X F,LIAN L S,et al.Study on blood physiological indicators of adaptation to hypoxia in Tibet Horse[J].Journal of Yunnan Agricultural University,2014,29(5):684-688.(in Chinese) |
[69] | XU S Q,LUOSANG J B,HUA S,et al.High altitude adaptation and phylogenetic analysis of Tibetan horse based on the mitochondrial genome[J].J Genet Genomics,2007,34(8):720-729. |
[70] | YANG L,KONG X Y,YANG S L,et al.Haplotype diversity in mitochondrial DNA reveals the multiple origins of Tibetan horse[J].PLoS One,2018,13(7):e0201564. |
[71] | 周大鹏,刘建国,王芳,等.藏獒肺组织对高原低氧环境的适应特性[J].甘肃农业大学学报,2009,44(4):25-28.ZHOU D P,LIU J G,WANG F,et al.Pulmonary tissue adaptation to high altitude of Tibetan Mastiff[J].Journal of Gansu Agricultural University,2009,44(4):25-28.(in Chinese) |
[72] | LI Y,WU D D,BOYKO A R,et al.Population variation revealed high-altitude adaptation of Tibetan mastiffs[J].Mol Biol Evol,2014,31(5):1200-1205. |
[73] | MIAO B P,WANG Z,LI Y X.Genomic analysis reveals hypoxia adaptation in the Tibetan mastiff by introgression of the gray wolf from the Tibetan plateau[J].Mol Biol Evol,2017,34(3):734-743. |
[74] | WU H,LIU Y H,WANG G D,et al.Identifying molecular signatures of hypoxia adaptation from sex chromosomes:a case for Tibetan Mastiff based on analyses of X chromosome[J].Sci Rep,2016,6(1):35004. |
[75] | SHENDURE J,JI H.Next-generation DNA sequencing[J].Nat Biotechnol,2008,26(10):1135-1145. |
[1] | 孙雯莉, 王浩奇, 泽里磋, 高雨樊, 张非凡, 张健, 段梦琪, 商鹏, 强巴央宗. 藏猪促炎因子(IL-1β、IL-6、TNF-α)多态性及其表达与免疫性状的关联分析[J]. 畜牧兽医学报, 2024, 55(5): 1958-1969. |
[2] | 王潇, 张昊, 栾庆江, 李慧, 杨鼎, 王婷月, 田菁, 赵濛, 陈陆, 田如刚. 冷热应激对肉牛生理指标及基因表达影响的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 894-904. |
[3] | 王浩, 肖金龙, 沈珏, 赵金刚, 王帅, 刘根, 赵汝, 肖鹏, 高洪. 细胞死亡的新方式——铁死亡与铜死亡[J]. 畜牧兽医学报, 2024, 55(2): 461-470. |
[4] | 冯伟民, 刘潇, 黄腾. 畜禽疱疹病毒逃避CTL识别的策略:干扰MHC-Ⅰ分子抗原递呈途径[J]. 畜牧兽医学报, 2023, 54(6): 2241-2251. |
[5] | 邓娟, 张红平, 余佳林, 宋天增, 李利. 基于线粒体ATP6及Cytb基因多态性研究藏山羊高原适应性[J]. 畜牧兽医学报, 2020, 51(7): 1573-1586. |
[6] | 钟英杰, 向光明, 狄冉, 胡文萍, 王翔宇, 储明星, 刘秋月. FBXL家族在哺乳动物生物节律中调控作用的研究进展[J]. 畜牧兽医学报, 2020, 51(2): 217-226. |
[7] | 芦春莲, 安亚辉, 孟宪华, 闫恒普, 郭俊锁, 曹洪战. 低水平聚天门冬氨酸锌对生长猪生长性能、血液指标、组织器官锌沉积及锌排放的影响[J]. 畜牧兽医学报, 2020, 51(10): 2453-2462. |
[8] | 王冰源, 刘志国, 牟玉莲. 磷酸酶Wip1基因敲除表型及机制研究进展[J]. 畜牧兽医学报, 2017, 48(12): 2232-2238. |
[9] | 兰道亮,熊显荣,柴志欣,艾鷖,黄偲,李键. 牦牛发情期卵巢比较转录组学研究[J]. 畜牧兽医学报, 2016, 47(9): 1830-1839. |
[10] | 景志忠;贾怀杰;周涛;何小兵. 正痘病毒干扰宿主免疫应答的分子及其作用途径[J]. 畜牧兽医学报, 2011, 42(11): 1503-1512. |
[11] | 李梦云;陈代文;张克英. PRKAG3在猪组织器官中的表达差异及与胴体品质关系研究[J]. 畜牧兽医学报, 2006, 37(6): 566-570. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||