[1] HACKETT P H, RENNIE D, HOFMEISTER S E, et al. Fluid retention and relative hypoventilation in acute mountain sickness[J]. Respiration, 1982, 43(5):321-329.
[2] SUTTON J R, BRYAN A C, GRAY G W, et al. Pulmonary gas exchange in acute mountain sickness[J]. Aviat Space Environ Med, 1976, 47(10):1032-1037.
[3] CHIODI H. Respiratory adaptations to chronic high altitude hypoxia[J]. J Appl Physiol, 1957, 10(1):81-87.
[4] HODGES M R, FORSTER H V, PAPANEK P E, et al. Ventilatory phenotypes among four strains of adult rats[J]. J Appl Physiol, 2002, 93(3):974-983.
[5] STROHL K P, THOMAS A J, ST JEAN P, et al. Ventilation and metabolism among rat strains[J]. J Appl Physiol, 1997, 82(1):317-323.
[6] YE J S, TIPOE G L, FUNG P C, et al. Augmentation of hypoxia-induced nitric oxide generation in the rat carotid body adapted to chronic hypoxia:an involvement of constitutive and inducible nitric oxide synthases[J]. Pflügers Arch, 2002, 444(1-2):178-185.
[7] 常兰,张寿,雷乃虎,等. 牦牛和柴达木黄牛颈动脉体的组织微细结构比较[J]. 解剖学报, 2016, 47(3):374-380.
CHANG L, ZHANG S, LEI N H, et al. Comparison of microstructures of the carotid body between yaks and Chaidamu yellow cattle[J]. Acta Anatomica Sinica, 2016, 47(3):374-380. (in Chinese)
[8] 常兰,张寿,雷乃虎,等. 牦牛和柴达木黄牛的颈动脉体I型细胞线粒体和电子致密核心囊泡的体视学比较[J]. 畜牧兽医学报, 2016, 47(7):1474-1479.
CHANG L, ZHANG S, LEI N H, et al. Stereologic study on mitochondria and electron dense-cored vesicles of carotid body type I cells between yak and Qaidam yellow cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(7):1474-1479. (in Chinese)
[9] CRUZ J C, REEVES J T, GROVER R F, et al. Ventilatory acclimatization to high altitude is prevented by CO2 breathing[J]. Respiration, 1980, 39(3):121-130.
[10] HACKETT P H, REEVES J T, REEVES C D, et al. Control of breathing in sherpas at low and high altitude[J]. J Appl Physiol Respir Environ Exerc Physiol, 1980, 49(3):374-379.
[11] SEVERINGHAUS J W, BAINTON C R, CARCELEN A. Respiratory insensitivity to hypoxia in chronically hypoxic man[J]. Respir Physiol, 1966, 1(3):308-334.
[12] LAHIRI S, MILLEDGE J S. Acid-base in Sherpa altitude residents and lowlanders at 4880 M[J]. Respir Physiol, 1967, 2(3):323-334.
[13] 杨生岳,冯恩志,马子琪. 高原世、移居者对低、高氧通气反应的研究[J]. 高原医学杂志, 1994(3):40-43.
YANG S Y, FENG E Z, MA Z Q. Ventilatory response to both progressive hypoxia and O2 breathing in lowlanders and highlanders at high altitude[J]. Journal of High Altitude Medicine, 1994(3):40-43. (in Chinese)
[14] 孙新甫,庄建国,扎西卓玛,等. 拉萨健康藏汉族成人低氧通气反应及肺通气功能比较研究[J]. 中国应用生理学杂志, 1995, 11(3):264-267.
SUN X F, ZHUANG J G, ZHAXI Z M, et al. A comparative study on hypoxic ventilatory responsiveness and ventilation between healthy Tibetan and Han adults in Lhasa[J]. Chinese Journal of Applied Physiology, 1995, 11(3):264-267. (in Chinese)
[15] 格日力,陈秋红,和伦高娃,等. 中高海拔地区藏族低氧通气反应的特征[J]. 中华结核和呼吸杂志, 1994, 17(6):364-366.
GE R L, CHEN Q H, HELUN G W, et al. Characteristics of hypoxic ventilatory response in Tibetan living at moderate and high altitudes[J]. Chinese Journal of Tuberculosis and Respiratory Diseases, 1994, 17(6):364-366. (in Chinese)
[16] DONOVAN L M, CHAI S, GILLOMBARDO C B, et al. Ventilatory behavior and carotid body morphology of Brown Norway and Sprague Dawley rats[J]. Respir Physiol Neurobiol, 2011, 178(2):250-255.
[17] SHEIKHBAHAEI S, GOURINE A V, SMITH J C. Respiratory rhythm irregularity after carotid body denervation in rats[J]. Respir Physiol Neurobiol, 2017, 246:92-97.
[18] MOYA E A, ALCAYAGA J, ITURRIAGA R. NO modulation of carotid body chemoreception in health and disease[J]. Respir Physiol Neurobiol, 2012, 184(2):158-164.
[19] FUNG M L, YE J S, FUNG P. Acute hypoxia elevates nitric oxide generation in rat carotid body in vitro[J]. Pflügers Arch, 2001, 442(6):903-909.
[20] VALDÉS V, MOSQUEIRA M, REY S, et al. Inhibitory effects of NO on carotid body:contribution of neural and endothelial nitric oxide synthase isoforms[J]. Am J Physiol Lung Cell Mol Physiol, 2003, 284(1):L57-L68. |