ACTA VETERINARIA ET ZOOTECHNICA SINICA
LIU Xue-qing, YANG Hao, WANG Jian-gang, CAO Bin-yun*
Received:
2012-04-10
Online:
2012-12-26
Published:
2012-12-26
CLC Number:
LIU Xue-qing, YANG Hao, WANG Jian-gang, CAO Bin-yun. Research Progress on the Biogenesis and Related Proteins of piRNA[J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, doi: .
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1]LEE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochronic gene lin-4 encondes small RNAs with antisense complementarity to lin-14 [J]. Cell, 1993, 75(5): 843-854. [2]SIOMI H, SIOMI M C. On the road to reading the RNA-interference code [J]. Nature, 2009, 457(7228): 396-404.[3]GIRARD A, SACHIDANANDAM R, HANNON G J, et al. A germline-specific class of small RNAs binds mammalian Piwi proteins [J]. Nature, 2006, 442(7099): 199-202.[4]ARAVIN A, GAIDATZIS D, PFEFFER S, et al. A novel class of small RNAs bind to MILI protein in mouse testes [J]. Nature, 2006, 442(7099): 203-207.[5]LAU N C, SETO A G, KIM J, et al. Characterization of the piRNA complex from rat testes [J]. Science, 2006, 313(5785): 363-367.[6]GRIVNA S T, BEYRET E, WANG Z, et al. A novel class of small RNAs in mouse spermatogenic cells [J]. Genes Dev, 2006, 20(13): 1709-1714.[7]WATANABE T, TAKEDA A, TSUKIYAMA T, et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes [J]. Genes Dev, 2006, 20(13): 1732-1743.[8]HOUWING S, KAMMINGA L M, BEREZIKOV E, et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish [J]. Cell, 2007, 129(1): 69-82.[9]DORNER S, EULALIO A, HUNTZINGER E, et al. Delving into the diversity of silencing pathways-Symposium on MicroRNAs and siRNAs: Biological functions and mechanisms [J]. EMBO Rep, 2007, 8(8): 723-729. [10]KLATTENHOFF C, BRATU D P, MCGINNIS-SCHULTZ N, et al. Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response [J]. Dev Cell, 2006, 12(1): 45-55.[11]BRENNECKE J, ARAVIN A A, STARK A, et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila [J]. Cell, 2007, 128(6): 1089-1103.[12]LIM A K, KAI T. Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster [J]. Proc Natl Acad Sci USA, 2007, 104(16): 6714-6719.[13]BRENNECKE J, ARAVIN A A, STARK A, et al. Discrete small RNA generating loci as master regulators of transposon activity in Drosophila [J]. Cell, 2007, 128(6): 1089-1103.[14]ZAMORE P D. Somatic piRNA biogenesis [J]. EMBO J, 2010, 29(19): 3219-3221.[15]KIRINO Y, MOURELATOS Z. Mouse Piwiinteracting RNAs are 2'-O-methylated at their 3'termini [J]. Nat Struct Mol Biol, 2007, 14(4): 347-348.[16]OHARA T, SAKAGUCHI Y, SUZUKI T, et al. The 3'termini of mouse Piwi-interacting RNAs are 2'-O-methylated [J]. Nat Struct Mol Biol, 2007, 14(4): 349-350.[17]KLATTENHOFF C, THEURKAUF W. Biogenesis and germline functions of piRNAs [J]. Development, 2008, 135(1): 3-9.[18]KIRINO Y, KIM N, DE PLANELL-SAGUER M, et al. Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability [J]. Nat Cell Biol, 2009, 11(5): 652-658.[19]ARAVIN A A, VAN DER HEIJDEN G W, CASTANEDA J, et al. Cytoplasmic compartmentalization of the fetal piRNA pathway in mice [J]. PLoS Genet, 2009, 5(12): 1-12.[20]VAN DER HEIJDEN G W, CASTANEDA J, BORTVIN A. Bodies of evidence-compartmentalization of the piRNA pathway in mouse fetal prospermatogonia [J]. Curr Opin Cell Biol, 2010, 22(6): 752-757.[21]SHOJI M, TANAKA T, HOSOKAWA M, et al. The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline [J]. Dev Cell, 2009, 17(6): 775-787.[22]VAGIN V V, WOHLSCHLEGEL J, QU J, et al. Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members [J]. Genes Dev, 2009, 23(15): 1749-1762.[23]KOJIMA K, KURAMOCHIMIYAGAWA S, CHUMA S, et al. Associations between PIWI proteins and TDRD1/MTR-1 are critical for integrated subcellular localization in murine male germ cells [J]. Genes Cells, 2009, 14(10): 1155-1165.[24]GUNAWARDANE L S, SAITO K, NISHIDA K M, et al. A slicer-mediated mechanism for repeat-associated siRNA 5' end formation in Drosophila [J]. Science, 2007, 315(5818): 1587-1590.[25]NISHIDA K M, SAITO K, MORI T, et al. Gene silencing mechanisms mediated by Aubergine piRNA complexes in Drosophila male gonad [J]. RNA, 2007, 13(11): 1911-1922.[26]SAITO K, NISHIDA K M, MORI T, et al. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome [J]. Genes Dev, 2006, 20(16): 2214-2222.[27]BRENNECKE J, MALONE C D, ARAVIN A A, et al. An epigenetic role for maternally inherited piRNAs in transposon silencing [J]. Science, 2008, 322(5906): 1387-1392.[28]ARAVIN A A, SACHIDANANDAM R, GIRARD A, et al. Developmentally regulated piRNA clusters implicate MILI in transposon control [J]. Science, 2007, 316(5825): 744-747.[29]LI C J, VAGIN V V, LEE S H, et al. Collapse of germline piRNAs in the absence of argonaute3 reveals somatic piRNAs in flies [J]. Cell, 2009, 137(3): 509-521.[30]MALONE C D, BRENNECKE J, DUS M, et al. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary [J]. Cell, 2009, 137(3): 522-535.[31]GHILDIYAL M, ZAMORE P D. Small silencing RNAs: An expanding universe [J]. Nat Rev Genet, 2009, 10(2): 94-108.[32]SAITO K, ISHIZU H, KOMAI M, et al. Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila [J]. Genes Dev, 2010, 24(22): 2493-2498.[33]HAASE A D, FENOGLIO S, MUERDTER F, et al. Probing the initiation and effector phases of the somatic piRNA pathway in Drosophila [J]. Genes Dev, 2010, 24(22): 2499-2504. [34]OLIVIERI D, SYKORA M M, SACHIDANANDAM R, et al. An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila [J]. EMBO J, 2010, 29(19): 3301-3317.[35]KING F J, LIN H. Somatic signaling mediated by fs (1) Yb is essential for germline stem cell maintenance during Drosophila oogenesis [J]. Development, 1999, 126(9): 1833-1844.[36]KING F J, SZAKMARY A, COX D N, et al. Yb modulates the divisions of both germline and somatic stem cells through piwi- and hh-mediated mechanisms in the Drosophila ovary [J]. Mol Cell, 2001, 7(3): 497-508.[37]SZAKMARY A, REEDY M, QI H, et al. The Yb protein defines a novel organelle and regulates male germline stem cell self-renewal in Drosophila melanogaster [J]. J Cell Biol, 2009, 185(4): 613-627.[38]QI H Y, WATANABE T, KU H Y, et al. The Yb body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells [J]. J Biol Chem, 2010, 286(5): 3789-3797.[39]SAITO K, INAGAKI S, MITUYAMA T, et al. A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila [J]. Nature, 2009, 461(7268): 1296-1299.[40]MURCHISON E P, KHERADPOUR P, SACHIDANANDAM R, et al. Conservation of small RNA pathways in platypus [J]. Genome Res, 2008, 18(6):995-1004.[41]KIRINO Y, MOURELATOS Z. Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′termini [J]. Nat Struct Mol Biol, 2007, 14(4): 347-348.[42]OHARA T, SAKAGUCHI Y, SUZUKI T, et al. The 3′termini of mouse Piwi-interacting RNAs are 2′-O-methylated [J]. Nat Struct Mol Biol, 2007, 14(4): 349-350.[43]HORWICH M D, LI C, MATRANGA C, et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC [J]. Curr Biol, 2007, 17(14): 1265-1272.[44]SAITO K, SAKAGUCHI Y, SUZUKI T, et al. Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi-interacting RNAs at their 3′ends [J]. Genes Dev, 2007, 21(13): 1603-1608.[45]KAMMINGA L M, LUTEIJN M J, DEN BROEDER M J, et al. Hen1 is required for oocyte development and piRNA stability in zebrafish [J]. EMBO J, 2010, 29(21): 3688-3700.[46]KAWAOKA S, IZUMI N, KATSUMA S , et al. 3′ end formation of Piwi-interacting RNAs in vitro [J]. Mol Cell, 2011, 43(6):1015-1022.[47]NISHIDA K M, OKADA T N, KAWAMURA T, et al. Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines [J]. EMBO J, 2009, 28(24): 3820-3831.[48]CHEN C, JIN J, JAMES D A, et al. Mouse Piwi interactome identifies binding mechanism of Tdrkh Tudor domain to arginine methylated Miwi [J]. Proc Natl Acad Sci USA, 2009, 106(48): 20336-20341.[49]REUTER M, CHUMA S, TANAKA T, et al. Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile [J]. Nat Struct Mol Biol, 2009, 16(6): 639-646.[50]VAGIN V V, WOHLSCHLEGEL J, QU J, et al. Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members [J]. Genes Dev, 2009, 23(15): 1749-1762.[51]KURAMOCHI-MIYAGAWA S, WATANABE T, GOTOH K, et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes [J]. Genes Dev, 2008, 22(7): 908-917.[52]KURAMOCHI-MIYAGAWA S, WATANABE T, GOTOH K, et al. MVH in piRNA processing and gene silencing of retrotransposons [J]. Genes Dev, 2010, 24(9): 887-892.[53]THOMSON T, LIN H F. The biogenesis and function of Piwi proteins and piRNAs: progress and prospect [J]. Annu Rev Cell Dev Biol, 2009, 25: 355-376.[54]DENG W, LIN H F. Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis [J]. Dev Cell, 2002, 2(6): 819-830.[55]ARAVIN A A, SACHIDANANDAM R, GIRARD A, et al. Developmentally regulated piRNA clusters implicate MILI in transposon control [J]. Science, 2007, 316(5825): 744-747.[56]CARMELL M A, GIRARD A, VAN DE KANT H J G, et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline [J]. Dev Cell, 2007, 12(4): 503-514.[57]WANG J Q, SAXE J P, TANAKA T, et al. Mili interacts with tudor domain-containing protein 1 in regulating spermatogenesis [J]. Curr Biol, 2009, 19(8): 640-644.[58]NISHIDA K M, SAITO K, MORI T, et al. Gene silencing mechanisms mediated by Aubergine piRNA complexes in Drosophila male gonad [J]. RNA, 2007, 13(11): 1911-1922.[59]ARAVIN A A, SACHIDANANDAM R, BOURC'HIS D, et al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice [J]. Mol Cell, 2008, 31(6): 785-799.[60]SRIDHAR V V, KAPOOR A, ZHANG K L, et al. Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination [J]. Nature, 2007, 447(7145): 735-738.[61]LIM A K, TAO L H, KAI T. piRNAs mediate posttranscriptional retroelement silencing and localization to pi-bodies in the Drosophila germline [J]. J Cell Biol, 2009, 186(3): 333-342.[62]MA J B, YUAN Y R, MEISTER G, et al. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein [J]. Nature, 2005, 434(7033): 666-670.[63]MA J B, YUAN Y R, MEISTER G, et al. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex [J]. Nature, 2005, 434(7033): 663-666. [64]CHEN Y, PANE A, SCHUPBACH T. Cutoff and aubergine mutations result in retrotransposon upregulation and checkpoint activation in Drosophila [J]. Curr Biol, 2007, 17(7): 637-642.[65]PANE A, WEHR K, SCHUPBACH T. Zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline [J]. Dev Cell, 2007, 12(6): 851-862.[66]WATANABE T, CHUMA S, YAMAMOTO Y, et al. MITOPLD is a mitochondrial protein rssential for nuage formation and piRNA biogenesis in the mouse germline [J]. Dev Cell, 2011, 20(3): 364-375.[67]KLATTENHOFF C, XI H L, LI C J, et al. The Drosophila HP1 homolog rhino is required for transposon silencing and piRNA production by dual-strand clusters [J]. Cell, 2009, 138(6): 1137-1149.[68]ZHANG D P, DUARTEGUTERMAN P, LANGLOIS V S, et al. Temporal expression and steroidal regulation of piRNA pathway genes(mael, piwi, vasa) during Silurana (Xenopus) tropicalis embryogenesis and early larval development [J]. Comp Biochem Physiol, Part C, 2010, 152(2): 202-206.[69]MEIKAR O, DA ROS M, LILJENBACK H, et al. Accumulation of piRNAs in the chromatoid bodies purified by a novel isolation protocol [J]. Exp Cell Res, 2010, 316(9): 1567-1575.[70]LAKSHMI S S, AGRAWAL S. piRNABank: a web resource on classified and clustered Piwi-interacting RNAs [J]. Nucleic Acids Res, 2008, 36(S1): D173-D177.[71]JULIANOA C, STEELEB R, LINA H. Investigating piwi function in Hydra stem cells [J]. Dev Biol, 2010, 344(1): 523.[72]DIETZL G, CHEN D, SCHNORRER F, et al. A genomewide transgenic RNAi library for conditional gene inactivation in Drosophila [J]. Nature, 2007, 448(7150): 151-156.[73]WANG J B, CZECH B, CRUNK A, et al. Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles [J]. Genome Res, 2011, 21(9): 1462-1477.[74]GAN H Y, LIN X W, ZHANG Z Q, et al. piRNA profiling during specific stages of mouse spermatogenesis [J]. RNA, 2011, 17(7): 1191-1203. |
[1] | LI Chunyan, ZHANG Yan, Lü Chunrong, DENG Weidong, QUAN Guobo. Research Progress on Antioxidant Mechanisms of Melatonin and Its Application in Cryopreservation of Mammalian Spermatozoa [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4468-4476. |
[2] | LIU Shuang, HE Lixia, MA Jun, FENG Xue, YANG Mengli, WANG Shuzhe, YANG Runjun, FANG Xibi, XIAN Hailong, WANG Yongkang, ZHANG Lupei, MA Yun. Analysis on Genetic Background and Body Size Indexes and Beef-purpose Index of Guyuan Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2376-2388. |
[3] | YANG Sukun, DONG Yimeng, WANG Hongliang, ZHAO Xitang, CHEN Xu, XING Xiumei. Genetic Diversity Analysis of Stud Tahe Red Deer Based on the Gene Fragments of mtDNA and Y Chromosome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2402-2413. |
[4] | LIU Ling, WANG Dandan, CUI Kai, MA Yuehui, JIANG Lin. Advances of Disease-Resistant Breeding on Porcine Reproductive and Respiratory Syndrome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 434-442. |
[5] | WANG Honghao, REN Xiaokang, ZHANG Yi, GAO Huijiang, CHE Leijie, WANG Xi. Application of Gene Chip Technology in Jinnan Bull Breeding [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(10): 2803-2813. |
[6] | LIU Xiaoqian, JIN Lanjie, DONG Yanqiu, LI Dongjie, ZHANG Cui, GU Shukai, LI Shijie. DNA Methylation Regulate the Genomic Imprinting of AQP1 Gene Specific in Bovine Placenta [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(8): 2181-2189. |
[7] | GUO Xiaoxiao, LI Yinxia, WANG Yue, ZHANG Han, ZHANG Jun, QIAN Yong, MENG Chunhua, WANG Huili, ZHONG Jifeng, CAO Shaoxian. Polymorphisms in the 5'Regulatory Region of PLAG1 Gene and Their Association with Early Body Weight of Hu Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2): 331-343. |
[8] | GUO Jiankang, FAN Ziyao, NIU Pengxia, LIU Zhiguo, MU Yulian, ZHANG Mingrui, LI Kui, WANG Bingyuan. The Study of Ide Gene Regulating Myoblast Proliferation and Differentiation through AKT [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(8): 1784-1794. |
[9] | YAO Dawei, MA Jing, CHEN Lili, WANG Tianzhen, SUN Huan, SONG Wenqin, MA Yi. Effects of Interfering PTEN Gene on the Transcription of Lipid Synthesis-related Genes and Fatty Acid Composition in Goat Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(4): 851-860. |
[10] | CUI Sheng, LIN Yaqiu, XU Qing, ZHU Jiangjiang, WANG Yong. Interfering Smad3 Promotes Goat Adipocyte Differentiation [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(3): 475-489. |
[11] | MA Jing, YAO Dawei, YANG Chunlei, LI Qiuling, WANG Tianzhen, CHEN Chengbin, SONG Wenqin, MA Yi. Effects of Interfering with CREB Gene on Lipid Synthesis Related Gene Expression and Triacylglycerol Synthesis in Mammary Epithelial Cells of Dairy Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(12): 2413-2421. |
[12] | ZHANG Cui, CHEN Weina, LI Junliang, GU Shukai, XU Da, LI Dongjie, LI Shijie. Abnormal Expression of LINC24065 in Somatic Cell Nuclear Transfer Cattle [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(1): 44-51. |
[13] | WANG Guan-nan, ZHAO Yu-peng, CHEN Wei-na, ZHANG Cui, XU Da, LI Dong-jie, LI Shi-jie. Genomic Imprinting Status of Gab1 and Sfmbt2 in Different Tissues of Adult Cattle [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(6): 1000-1006. |
[14] | LI Li-sha, PENG Yong-dong, ZHENG Xiao-ning, LI Xiang-long. Analysis of the Promoter Activity and Transcriptional Regulatory Elements of Goat PMEL Gene [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(5): 826-835. |
[15] | WANG Ji-ying, WANG Yan-ping, XU Yun-hua, WANG Cheng, LIN Hai-chao, HU Hong-mei, WU Ying, GUO Jian-feng. Analyses of Intramuscular Fat Content, Fatty Acid Composition and the Related Traits in Lulai Black Pigs [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(4): 585-594. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||