

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (12): 5998-6012.doi: 10.11843/j.issn.0366-6964.2025.12.006
• REVIEW • Previous Articles Next Articles
WANG Yushan, LIU Wangjing*
Received:2024-11-14
Published:2025-12-24
CLC Number:
WANG Yushan, LIU Wangjing. Mechanisms of Plant-derived Flavonoids Mediating Microbial Protection of the Intestinal Barrier[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(12): 5998-6012.
| [1] BAI Y X, ZENG Z Q, XIE Z Y, et al. Effects of polysaccharides from Fuzhuan brick tea on immune function and gut microbiota of cyclophosphamide-treated mice[J]. J Nutr Biochem, 2022, 101: 108947. [2] 寇鸿千, 秦 彤, 刘 明, 等. 多酚调控动物肠道健康的作用机制及植物多酚在猪生产中的应用研究进展[J]. 动物营养学报, 2024, 36(4): 2104-2117. KOU H Q, QIN T, LIU M, et al. The mechanism of polyphenols regulating animal intestinal health and the application of plant polyphenols in pig production[J]. Chinese Journal of Animal Nutrition, 2024, 36(4): 2104-2117.(in Chinese) [3] 黄素艳, 崔柯鑫, 周德庆, 等. 植物多酚改善肠道屏障及糖脂代谢的研究进展[J]. 食品研究与开发, 2024, 45(6): 218-224. HUANG S Y, CUI K X, ZHOU D Q, et al. Plant polyphenols improve intestinal barrier and glucose and lipid metabolism: A review[J]. Food Research and Development, 2024, 45(6): 218-224.(in Chinese) [4] SHI Y, ZHONG L, FAN Y D, et al. The protective effect of Mulberry leaf flavonoids on high-carbohydrate-induced liver oxidative stress, inflammatory response and intestinal microbiota disturbance in Monopterus albus[J]. Antioxidants, 2022, 11(5): 976. [5] ZHENG S L, ZHANG H, LIU R H, et al. Do short chain fatty acids and phenolic metabolites of the gut have synergistic anti-inflammatory effects? - New insights from a TNF-α-induced Caco-2 cell model[J]. Food Res Int, 2021, 139: 109833. [6] FAIZUL H, ADEEL A M, LI M W, et al. Potential of mulberry leaf biomass and its flavonoids to improve production and health in ruminants: mechanistic insights and prospects[J]. Animals, 2020, 10(11): 2076. [7] 陈 斌, 刘 洁, 詹敏敏, 等. 黄酮类化合物与肠道菌群互作研究进展[J]. 中国食品学报, 2022, 22(6): 369-381. CHEN B, LIU J, ZHAN M M, et al. Research progress on the interaction between flavonoids and intestinal microbiota[J]. Journal of Chinese Institute of Food Science & Technology, 2022, 22(6): 369-381. (in Chinese) [8] WAHLSTRÖM A, SAYIN S I, HANNS-ULRICH M, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1): 41-50. [9] 曹纬国, 刘志勤, 邵 云, 等. 黄酮类化合物药理作用的研究进展[J]. 西北植物学报, 2003, 23(12):2241-2247. CAO W G, LIU Z Q, SHAO Y, et al. A progress in pharmacological research of flavonoids[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(12):2241-2247. (in Chinese) [10] 文开新, 王成章, 严学兵, 等. 黄酮类化合物生物学活性研究进展[J]. 草业科学, 2010, 27(6):115-122. WEN K X, WANG C Z, YAN X B, et al. Research progress of flavonoids biological activity[J]. Pratacultural Science, 2010, 27(6):115-122. (in Chinese) [11] 余 芳, 金 涌. 黄酮类化合物的体内外代谢研究进展[J]. 山东化工, 2021, 50(22): 106-108,112. YU F, JIN Y. The research progress of flavonoids metabolism in vivo and in vitro[J]. Shandong Chemical Industry, 2021, 50(22): 106-108,112. (in Chinese) [12] HOSTETLER G L, RALSTON R A, SCHWARTZ S J, et al. Flavones: Food sources, bioavailability, metabolism, and bioactivity[J]. Adv Nutr,2017, 8(3): 423-435. [13] MUROTA K, NAKAMURA Y, UEHARA M, et al. Flavonoid metabolism: the interaction of metabolites and gut microbiota[J]. Bioscience, Biosci Biotechnol Biochem, 2018, 82(4): 600-610. [14] ERLUND I, KOSONEN T, ALFTHAN G, et al. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers[J]. Eur J Clin Pharmacol, 2000, 56(8): 545-553. [15] ISLAM M A, PUNT A, SPENKELINK B, et al. Conversion of major soy isoflavone glucosides and aglycones in in vitro intestinal models[J]. Mol Nutr Food Res,2014, 58(3): 503-515. [16] 何佳珂, 于 洋, 陈西敬, 等. 黄酮类化合物的药物代谢研究进展[J]. 中国中药杂志, 2010, 35(21): 2789-2794. HE J K, YU Y, CHEN X J, et al. Research progress on drug metabolism of flavanoids[J]. China journal of Chinese Materia Medica, 2010, 35(21): 2789-2794. (in Chinese) [17] 吴 方, 陈 桂, 曹 政, 等. 糖基化黄酮类化合物与肠道菌群的相互作用影响机体健康的研究进展[J]. 中国临床新医学, 2021, 14(10): 970-975. WU F, CHEN G, CAO Z, et al. Research progress in the interaction between glycosylated flavonoids and gut microbiota for human health[J]. Chinese Journal of New Clinical Medicine, 2021, 14(10): 970-975. (in Chinese) [18] YOSHIKAZU S, SETSUKO Y, MASAYUKI T, et al. Cloning and expression of a novel NADP(H)-dependent daidzein reductase, an enzyme involved in the metabolism of daidzein, from equol-producing Lactococcus strain 20-92[J]. Appl Environ Microbiol, 2010, 76(17): 5892-5901. [19] DULANTHA U, MONTOYA C A, MACE L, et al. Biotransformation of rutin in in vitro porcine ileal and colonic fermentation models[J]. J Agric Food Chem,2023,71(33):12487-12496. [20] YANG G H, HONG S, YANG P J, et al. Discovery of an ene-reductase for initiating flavone and flavonol catabolism in gut bacteria[J]. Nat Commun, 2021, 12(1): 790-790. [21] BERGER L M, WEIN R, BLANK R, et al. Bioavailability of the flavonol quercetin in cows after intraruminal application of quercetin aglycone and rutin[J]. J Dairy Sci, 2012, 95(9): 5047-5055. [22] BERGER L M, WEIN S, BLANK R, et al. Bioavailability of the flavonol quercetin in cows after intraruminal application of quercetin aglycone and rutin[J].J Dairy Sci, 2015, 95(9): 5047-5055. [23] CUI K, GUO X D, TU Y. Effect of dietary supplementation of rutin on lactation performance, ruminal fermentation and metabolism in dairy cows[J].J Anim Physiol Anim Nutr (Berl), 2015, 99(6): 1065-1073. [24] BERGER L M, BLANK R, ZORN F, et al. Ruminal degradation of quercetin and its influence on fermentation in ruminants[J].J Dairy Sci, 2015, 98(8): 5688-5698. [25] 师少军. 肠道“药物代谢酶-外排转运体偶联”对黄酮类化合物生物利用度影响的研究进展[J]. 中国医院药学杂志, 2019, 39(20): 2107-2112. SHI S J. Recent advances in intestinal "drug-metabolizing enzyme-efflux transporter coupling" and effect on bioavailability of flavonoids[J]. Chinese Journal of Hospital Pharmacy, 2019, 39(20): 2107-2112. (in Chinese) [26] ANDREA J, JEMMIFER M, SUSAN M, et al. Absorption of quercetin-3-glucoside and quercetin-4'-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter[J]. Biochem Pharmacol, 2003, 65(7): 1199-1026. [27] MUROTA K, NAKAMURA Y, UEHARA M, et al. Flavonoid metabolism: the interaction of metabolites and gut microbiota[J]. Biosci Biotechnol Biochem, 2018, 82(4): 600-610. [28] JIA L, WU J P, LEI Y, et al. Oregano essential oils mediated intestinal microbiota and metabolites and improved growth performance and intestinal barrier function in sheep[J]. Front Immunol, 2022, 13908015-908015. [29] 闫亚美, 冯丹萍, 陈晓燕, 等. 黑果枸杞花色苷的肥胖干预作用研究进展[J]. 食品科学技术学报, 2020, 38(4): 21-26. YAN Y M, FENG D P, CHEN X Y, et al. Review of obesity intervention of anthocyanins from lycium ruthenicum murr[J]. Journal of Food Science and Technology, 2020, 38(4): 21-26. (in Chinese) [30] 王海涛, 石姗姗, 李银霞, 等. 染料木素的抑菌活性及其机制的研究[J]. 营养学报, 2008(4): 403-406,409. WANG H T, SHI S S, LI Y X, et al. Study on anti-microbial activity of genistein and its mechanism[J]. Acta Nutrimenta Sinica, 2008(4): 403-406,409. (in Chinese) [31] SZENTKUTI L, RIEDESEL H, ENSS M L, et al. Pre-epithelial mucus layer in the colon of conventional and germ-free rats[J]. Histochem J, 1990, 22(9): 491-497. [32] 方圆圆, 吴 亚, 陈彦辉, 等. 不同益生菌干预对高脂饮食诱导肥胖小鼠脂代谢及脂多糖影响的研究[J]. 中国实验诊断学, 2019, 23(4): 692-695. FANG Y Y, WU Y, CHEN Y H, et al. Influence of different probiotic on lipid metabolism and LPS of high fat diet induced obese mice[J]. Chinese Journal of Laboratory Diagnosis, 2019, 23(4): 692-695. (in Chinese) [33] JE-KYUNG R, KIM S J, SANG-HYUN R, et al. Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4-MD2 for efficient LPS recognition and transfer[J]. Immunity, 2017, 46(1): 38-50. [34] 李娇娇. 异黄酮调节肠道屏障功能与蠕动功能的作用机制[D]. 南昌:南昌大学, 2021. LI J J. The mechanism of isoflavones in regulating intestinal barrier function and peristaltic function[J]. Nanchang: Nanchang University, 2021. (in Chinese) [35] ZHU L D, LU X X, LIU L, et al. Akkermansia muciniphila protects intestinal mucosa from damage caused by S. pullorum by initiating proliferation of intestinal epithelium[J]. Vet Res, 2020, 51(1): 34. [36] LIU L L, LIU Z L, LI H, et al. Naturally occurring TPE-CA maintains gut microbiota and bile acids homeostasis via FXR signaling modulation of the liver-gut axis[J]. Front Pharmacol, 2020, 11: 12. [37] LLOYD-PRICE J, ARZE C, ANANTHAKRISHNAN A N, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases[J]. Nature, 2019, 569(7758): 655-662. [38] ZWOLINSKA-WCISLO M, BRZOZOWSKI T, BUDAK A, et al. Effect of Candida colonization on human ulcerative colitis and the healing of inflammatory changes of the colon in the experimental model of colitis ulcerosa[J]. J Physiol Pharmacol, 2009, 60(1): 107-118. [39] DAVID L A, MAURICE C F, CARMODY R N, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014, 505(7484): 559-563. [40] FANG T Y, WEI T, HAI X R, et al. The effects of short-chain fatty acids on rat colonic hypermotility induced by water avoidance stress[J]. Drug Des Devel Ther, 2020, 14: 4671-4684. [41] 沙珊珊, 董世荣, 杨玉菊. 肠道菌群及代谢物调控宿主肠道免疫的研究进展[J]. 生物技术通报, 2023, 39(8): 126-136. SHA S S, DONG S R, YANG Y J, et al. Research progress in gut microbiota and metabolites regulating host intestinal immunity[J]. Biotechnology Bulletin, 2023, 39(8): 126-136. (in Chinese) [42] 段钰卉. 基于“肠道菌群-SCFAs-GPR41/GPR43-GLP-1”探究桑叶总黄酮治疗2型糖尿病作用机制[D]. 北京:北京中医药大学, 2022. DUAN Y H, et al. Investigating the mechanism of mulberry leaf total flavonoids in the treatment of Type 2 diabetes via the gut microbiota-SCFAs-GPR41/GPR43-GLP-1 axis[D]. Beijing: Beijing University of Chinese Medicine, 2022. (in Chinese) [43] WU Z H, HUANG S M, LI T T, et al. Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis[J]. Microbiome, 2021, 9(1): 184-184. [44] WANG H B, WANG P Y, WANG X, et al. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription[J]. Dig Dis Sci, 2012, 57(12): 3126-3135. [45] PORRAS D, NISTAL E, FLÓREZ-MARTÍNEZ S, et al. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation[J]. Free Radic Biol Med, 2017, 102: 188-202. [46] VOLTOLINI C, BATTERSBY S, ETHERINGTON S L, et al. A novel antiinflammatory role for the short-chain fatty acids in human labor[J]. Endocrinology, 2012, 153(1): 395-403. [47] WANG W, DERNST A, MARTIN B, et al. Butyrate and propionate are microbial danger signals that activate the NLRP3 inflammasome in human macrophages upon TLR stimulation[J]. Cell Rep, 2024, 43(9): 114736. [48] CHIANG J Y L. Bile acids: regulation of synthesis[J]. J Lipid Res, 2009, 50(10): 1955-1966. [49] 王馨怡, 姚军虎, 张 霞, 等. 胆汁酸调控动物肠道健康的作用及机制研究进展[J]. 畜牧兽医学报, 2025, 56(3):1006-1018. WANG X Y, YAO J H, ZHANG X, et al. Advances in effect and mechanism of bile acids regulating animal intestinal health[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3):1006-1018. (in Chinese) [50] DAHIYA M, JOVELJ, MONAGHAN T, et al. Insilico analysis of changes in predicted metabolic capabilities of intestinal microbiota after fecalmicrobial transplantation for treatment of recurrent Clostridioides difficile Infection [J]. Microorganisms, 2023, 11 (4): 1078. [51] DEVLIN A S, FISCHBACH M A. A biosynthetic pathway for a prominent class of microbiota-derived bileacids[J]. Nat Chem Biol, 2015, 11(9): 685-690. [52] WATANABE M, FUKIYA S, YOKOTA A. Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humansand rodents[J]. J Lipid Res, 2017, 58(6):1143-1152. [53] 陈思平, 韩 丽, 舒 鹏, 等. 胆汁酸膜受体TGR5在胆道疾病中的研究进展[J]. 临床肝胆病杂志, 2022, 38(3): 724-728. CHEN S P, HAN L, SHU P, et al. Research advances in the bile acid membrane receptor TGR5 in biliary tract diseases[J], Journal of Clinical Hepatology, 2022, 38(3): 724-728. (in Chinese) [54] FIORUCCI S, CARINO A, MONIA B, et al. Bile acid signaling in inflammatory bowel diseases[J]. Dig Dis Sci, 2021, 66(3): 674-693. [55] 梁开阳. 黄芪根超微粉对山羊胆汁酸代谢及机体免疫的影响[D]. 重庆:西南大学, 2022. LIANG K Y. Effects of astragalus membranaceus ultrafine particles on the bile acid metabolism and host immunity in young goats[D]. Chongqing: Southwest University, 2022.(in Chinese) [56] FORMAN B M, GOODE E, CHEN J, et al. Identification of a nuclear receptor that is activated by farnesol metabolites[J]. Cell, 1995, 81(5): 687-693. [57] GADALETA R M, GARCIA-IRIGOYEN O, CARIELLO M, et al. Fibroblast growth factor 19 modulates intestinal microbiota and inflammation in presence of farnesoid X receptor[J]. EBioMedicine, 2020, 54: 102719. [58] INAGAKI T, CHOI M, MOSCHETTA A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis[J]. Cell Metab, 2005, 2(4): 217-225. [59] MARTINEZ-AUGUSTIN O, MEDINA F S D. Intestinal bile acid physiology and pathophysiology[J]. World J Gastroenterol, 2008, 14(37): 5630-5640. [60] 陆永娟, 陈芝芸, 何蓓晖, 等. 山楂叶总黄酮对非酒精性脂肪性肝病大鼠肝脏FXR/SREBP-1c表达的影响[J]. 浙江中医杂志, 2018, 53(9): 634-637. LU Y J, CHEN Z Y, HE B H, et al. The effect of total flavonoids from hawthorn leaves on the expression of FXR/SREBP-1c in the liver of rats with non-alcoholic fatty liver disease[J]. Zhejiang Journal of Traditional Chinese Medicine, 2018, 53(9): 634-637.(in Chinese) [61] 部 繁. 黄蜀葵花总黄酮依赖FXR调节“胆汁酸-肠道菌群”稳态改善DSS诱导小鼠结肠炎[D]. 南京:南京中医药大学, 2022. BU F. Effects of total flavone of abelmoschus manihot on alleviating experimental colitis in mice by modulating “bile acid-gut microbiota” homeostasis via farnesoid X receptor-associated pathways[D]. Nanjing: Nanjing University of Chinese Medicine, 2022. (in Chinese) [62] WANG F, ZHAO C Y, TIAN G F, et al. Naringin alleviates atherosclerosis in ApoE-/- Mice by regulating cholesterol metabolism involved in gut microbiota remodeling [J]. J Agric Food Chem, 2020, 68(45): 12651-12660. [63] 刘美静. 基于FXR探讨夏佛塔苷对APAP或高脂饮食诱导肝损伤的保护作用[D]. 广州:广州中医药大学, 2019. LIU M J, The protective effect of schaftoside on liver injury induced by APAP or high fat diet through farnesoid X reporter[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2019.(in Chinese) [64] ZHANG L, MIAO C Y, WANG Z X, et al. Preparation and characterisation of baicalin magnesium and its protective effect in ulcerative colitis via gut microbiota-bile acid axis modulation[J]. J Agric Food Chem, 2024, 126155416-155416. [65] VALLIM T Q D A, TARLING E J, EDWARDS P A. Pleiotropic roles of bile acids in metabolism[J]. Cell Metab, 2013, 17(5): 657-669. [66] CIPRIANI S, MENCARELLI A, CHINI M G, et al. The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis[J]. PLoS One, 2011, 6(10): e25637. [67] YUSTA B, HOLLAND D, KOEHLER J A, et al. ErbB signaling is required for the proliferative actions of GLP-2 in the murine gut[J]. Gastroenterology, 2009, 137(3): 986-996. [68] DONG S J, ZHU M, WANG K, et al. Dihydromyricetin improves DSS-induced colitis in mice via modulation of fecal-bacteria-related bile acid metabolism[J]. Pharmacol Res, 2021,(prepublish): 105767-. [69] 于晓依, 常 畅, 陈天笑, 等. 王不留行黄酮苷改善糖尿病肾病小鼠肠道菌群紊乱和肾脏脂质沉积的研究[J]. 华西药学杂志, 2024, 39(1): 36-42. YU X Y, CHANG C, CHEN T X, et al. Study on vaccarin in improving intestinal flora disorder and renal lipid deposition in diabetes nephropathy mice[J]. West China Journal of Pharmaceutical Sciences, 2024, 39(1): 36-42.(in Chinese) [70] HALIBASIC E, CLAUDEL T, TRAUNER M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond[J]. J Hepatol 2013, 58(1): 155-168. [71] 窦 薇,张晶晶,王峥涛.基于作用靶点的中药药效物质基础与作用机理研究—几种黄酮类化合物对溃疡性结肠炎的保护作用及机制研究[C]//中国药学会中药和天然药物专业委员会,浙江省药学会.2013全国中药与天然药物高峰论坛暨第十三届全国中药和天然药物学术研讨会论文集.上海市复方中药重点实验室,上海中医药大学中药研究所;,2013:5. DOU W, ZHANG J J, WANG Z T. Research on the pharmacodynamic substance basis and mechanism of action of traditional Chinese medicine based on targets—the protective effect and mechanism of several flavonoids on ulcerative colitis[C]// Chinese Pharmaceutical Association Traditional Chinese Medicine and Natural Medicine Professional Committee, Zhejiang Pharmaceutical Association. 2013 National Summit Forum on Traditional Chinese Medicine and Natural Medicine and the 13th National Symposium on Traditional Chinese Medicine and Natural Medicine.Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 2013:5.(in Chinese) [72] STEEGENGA W T, MISCHKE M, LUTE C, et al. Maternal exposure to a Western-style diet causes differences in intestinal microbiota composition and gene expression of suckling mouse pups[J]. Mol Nutr Food Res, 2017, 61(1): 1600141. [73] RITZE Y, BÁRDOS G, HUBERT A, et al. PP053-SUN EFFECT OF TRYPTOPHAN SUPPLEMENTATION ON DIET-INDUCED NON-ALCOHOLIC FATTY LIVER DISEASE IN MICE[J]. Clin Nutr, 2013, 32: S41-S41. [74] LIANG H W, DAI Z L, KOU J, et al. Dietary L-tryptophan supplementation enhances the intestinal mucosal barrier function in weaned piglets: implication of tryptophan-metabolizing microbiota[J]. Int J Mol Sci, 2018, 20(1): 20-20. [75] ROAGER H M, LICHT T R. Microbial tryptophan catabolites in health and disease[J]. Nature Communications, 2018, 9(1): 3294. [76] WLODARSKA M, LUO C W, KOLDE R, et al. Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation[J]. Cell Host Microbe, 2017, 22(1): 25-37. e6. [77] LAMAS B, NATIVIDAD J M, SOKOL H. Aryl hydrocarbon receptor and intestinal immunity[J]. Mucosal Immunol, 2018, 11(10): 1024-1038. [78] 葛晶晶. 基于肠道菌群和肝脏代谢组学研究柑橘类黄酮对非酒精性脂肪肝病的保护作用[D]. 南昌:南昌大学, 2022. GE J J. Protective effects of citrus flavonoids on non-alcohol fatty liver disease based on gut microbiota and liver metabolomics[D]. Nanchang: Nanchang University, 2022. (in Chinese) [79] 巩家慧, 孔令斌, 张 帆. 肠道微生物介导的色氨酸代谢与肠粘膜屏障研究进展[J]. 中国病原生物学杂志, 2023, 18(9): 1110-1113. GONG J H, KONG L B, ZHANG F. Research progress on intestinal microbe-mediated tryptophan metabolism and intestinal mucosal barrier[J]. Journal of Parasitic Biology,2023,18(9):1110-1113. (in Chinese) |
| [1] | LU Songcui, ZHENG Nan, WANG Jiaqi, ZHANG Yangdong. Research Progress on Short Chain Fatty Acids Detection Methods [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3640-3649. |
| [2] | TU Minhang, CAI Gentan, SONG Yanze, AN Guihua, WU Jiangheng, MA Longfei, SHI Zhendan, HAN Guofeng, CHEN Zhe, WANG Tian, WANG Chao. Dietary Lycium barbarum Flavonoids Improve Muscle Quality of Meat Ducks by Regulating Nrf/HO-1 Signaling Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3922-3932. |
| [3] | ZHANG Chenmiao, CHEN Bowen, JIANG Linshu, TONG Jinjin. Potential Applications of Nanotechnology-Improved Flavonoids in Animal Health Management [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3107-3115. |
| [4] | PAN Hua, SUN Lei, ZHANG Jun, LIU Lili, MA Wengang, CAO Aizhi, LV Mingbin. Research Progress in Antimicrobial Mechanism and Structural Modification of Bile Acids [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2546-2554. |
| [5] | LIU Zilong, LI Qiao, WU Yi, WANG Huihui, LI Taotao, MA Youji. Transcriptomics Reveals the Effects of Chinese Herbal Feed Additives on Bile Acids Metabolism and Immune Function in Hu Sheep Liver Tissue [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 3014-3026. |
| [6] | SONG Lin, ZHAO Xiaowei, QI Yingjie, ZHANG Yangdong. Research Progress on the Effect of Short-chain Fatty Acids on Gastrointestinal Microbiota in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2082-2092. |
| [7] | ZHANG Xuan, YANG Xue, LI Xinke, ZHENG Nan, MENG Lu. The Regulatory Effects of Sodium Butyrate on Ileal Development, Inflammatory Factors and Physical Barrier Function in Young Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1278-1289. |
| [8] | ZHAO Yuwei, WANG Zhuo, ZHANG Chengrui, TU Yan, DIAO Qiyu, CUI Kai*. Mechanism Research and Application Progress of Catechins Regulating Animal Intestinal Barrier Function [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(12): 6013-6024. |
| [9] | ZHANG Hexin, QU Youyang, CHEN Ruoxuan, HE Huan, TANG Qichao, YIN Baishuang, WANG Ben, FENG Xiujing*. Chlorogenic Acid Ameliorates Chronic Stress-Induced Intestinal Injury in Rats by Inhibiting NF-κB/NLRP3 Pathway-Mediated Pyroptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(12): 6502-6512. |
| [10] | BAI Huitao, SUN Jian, XIE Weichun, WANG Xueying, WANG Xiaona, TANG Lijie. Research Progress on the Mechanism of Fecal Bacteria Transplantation to Improve Intestinal Barrier Function in Early Weaning Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5379-5388. |
| [11] | LI Xinke, YANG Xue, ZHANG Xuan, MENG Lu, ZHANG Yangdong, WANG Jiaqi, ZHENG Nan. Effects of Short-Chain Fatty Acids on Liver and Brain Development and Immune Function in Neonatal Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5588-5599. |
| [12] | WANG Jing, GUAN Shuwen, ZHAO Xiaobo, WANG Linwei, GUO Gang, JIANG Linshu. The Protective Effect of Bamboo Leaf Flavonoids on H2O2-induced Pyroptosis in Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 281-294. |
| [13] | Yu CHEN, Ziqing XIU, Musa MGENI, Yi SHI, Junqiu ZHANG, Xiaoyu JIANG, Jingzhi LÜ, Yawang SUN. Effects of Dandelion and Akebia Extract on Growth Performance, Intestinal Health and Relative Expression of Drug Transporter Genes in Weaned Rabbits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3725-3739. |
| [14] | HAN Fuzhen, CAI Limeng, LI Zhuoran, WANG Xueying, XIE Weichun, KUANG Hongdi, LI Jiaxuan, CUI Wen, JIANG Yanping, LI Yijing, SHAN Zhifu, TANG Lijie. Research Progress on the Mechanism of Intestinal Flora-Mediated Regulation of Intestinal Mucosal Immunity by Secondary Bile Acids and Their Receptors [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1904-1913. |
| [15] | XIE Yi, ZOU Lirui, TAO Ran, LIU Sha, WANG Jiangping, WEN Lixin, WU Jing, WANG Ji. Protective Effect of Tannic Acid on Colonic Mucosal Damage and Microflora Disturbance Induced by Low-Dose T-2 Toxin in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3582-3594. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||