Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (11): 4537-4550.doi: 10.11843/j.issn.0366-6964.2023.11.010
• REVIEW • Previous Articles Next Articles
SHAN Qiang, WANG Xue, ZHU Yaohong, WANG Jiufeng*
Received:
2022-11-15
Online:
2023-11-23
Published:
2023-11-26
CLC Number:
SHAN Qiang, WANG Xue, ZHU Yaohong, WANG Jiufeng. Application Prospect of Anti-inflammatory Mechanism of Lactobacillus rhamnosus and Its Prevention and Treatment in Livestock Diseases[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4537-4550.
[1] | PELLEGRINO M, BERARDO N, GIRAUDO J, et al. Bovine mastitis prevention:humoral and cellular response of dairy cows inoculated with lactic acid bacteria at the dry-off period[J]. Benef Microbes, 2017, 8(4):589-596. |
[2] | PETROVA M I, REID G, TER HAAR J A. Lacticaseibacillus rhamnosus GR-1, a. k. a. Lactobacillus rhamnosus GR-1:past and future perspectives[J]. Trends Microbiol, 2021, 29(8):747-761. |
[3] | 崔志文. 鼠李糖乳杆菌影响仔猪肠道屏障功能的研究[D]. 杭州:浙江大学, 2013.CUI Z W. Effects of Lactobacillus rhamnosus on intestinal barrier in piglets[D]. Hangzhou:Zhejiang University, 2013. (in Chinese) |
[4] | REID G, COOK R L, BRUCE A W. Examination of strains of Lactobacilli for properties that may influence bacterial interference in the urinary tract[J]. J Urol, 1987, 138(2):330-335. |
[5] | MILLSAP K, REID G, VAN DER MEI H C, et al. Displacement of Enterococcus faecalis from hydrophobic and hydrophilic substrata by Lactobacillus and Streptococcus spp. As studied in a parallel plate flow chamber[J]. Appl Environ Microbiol, 1994, 60(6):1867-1874. |
[6] | KÖHLER G A, ASSEFA S, REID G. Probiotic interference of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 with the opportunistic fungal pathogen Candida albicans[J]. Infect Dis Obstet Gynecol, 2012, 2012:636474. |
[7] | MCMILLAN A, DELL M, ZELLAR M P, et al. Disruption of urogenital biofilms by lactobacilli[J]. Colloids Surf B Biointerfaces, 2011, 86(1):58-64. |
[8] | VELRAEDS M M C, VAN DE BELT-GRITTER B, VAN DER MEI H C, et al. Interference in initial adhesion of uropathogenic bacteria and yeasts to silicone rubber by a Lactobacillus acidophilus biosurfactant[J]. J Med Microbiol, 1998, 47(12):1081-1085. |
[9] | REID G, YOUNES J A, VAN DER MEI H C, et al. Microbiota restoration:natural and supplemented recovery of human microbial communities[J]. Nat Rev Microbiol, 2011, 9(1):27-38. |
[10] | 苏 帅, 孙 会, 于航宇, 等. 鼠李糖乳杆菌的生物学功能[J]. 动物营养学报, 2019, 31(1):97-101.SU S, SUN H, YU H Y, et al. Biological function of Lactobacillus rhamnosus[J]. Chinese Journal of Animal Nutrition, 2019, 31(1):97-101. (in Chinese) |
[11] | SHAN Q, LIU N, WANG X, et al. Lactobacillus rhamnosus GR-1 attenuates foodborne Bacillus cereus-induced NLRP3 inflammasome activity in bovine mammary epithelial cells by protecting intercellular tight junctions[J]. J Anim Sci Biotechnol, 2022, 13(1):101. |
[12] | LI Y N, ZHU Y H, CHU B X, et al. Lactobacillus rhamnosus GR-1 prevents Escherichia coli-induced apoptosis through pink1/parkin-mediated mitophagy in bovine mastitis[J]. Front Immunol, 2021, 12:715098. |
[13] | WU Q, ZHU Y H, XU J, et al. Lactobacillus rhamnosus GR-1 ameliorates Escherichia coli-induced activation of NLRP3 and NLRC4 inflammasomes with differential requirement for ASC[J]. Front Microbiol, 2018, 9:1661. |
[14] | WU Q, LIU M C, YANG J, et al. Lactobacillus rhamnosus GR-1 ameliorates Escherichia coli-induced inflammation and cell damage via attenuation of ASC-independent NLRP3 inflammasome activation[J]. Appl Environ Microbiol, 2016, 82(4):1173-1182. |
[15] | LIU N, WANG X, SHAN Q, et al. Lactobacillus rhamnosus ameliorates multi-drug-resistant Bacillus cereus-induced cell damage through inhibition of NLRP3 inflammasomes and apoptosis in bovine endometritis[J]. Microorganisms, 2022, 10(1):137. |
[16] | 刘 宁. 乳酸杆菌限制K+外排缓解细菌诱发子宫内膜上皮细胞NLRP3激活的机理[D]. 北京:中国农业大学, 2022.LIU N. The mechanism of Lactobacillus inhibiting K+ efflux to regulating the activation of NLRP3 pathway in endometrial epithelial cells infected by bacteria[D]. Beijing:China Agricultural University, 2022. (in Chinese) |
[17] | LIU M C, WU Q, WANG M L, et al. Lactobacillus rhamnosus GR-1 limits Escherichia coli-induced inflammatory responses via attenuating MyD88-dependent and MyD88-independent pathway activation in bovine endometrial epithelial cells[J]. Inflammation, 2016, 39(4):1483-1494. |
[18] | 刘佳玮, 冯晓微, 焦玉兰, 等. 鼠李糖乳杆菌GR-1介导MAPK信号通路抗大肠杆菌诱导奶牛子宫内膜上皮细胞炎性损伤[J]. 河北农业大学学报, 2022, 45(2):99-106.LIU J W, FENG X W, JIAO Y L, et al. Protective effect of MAPK signal pathway mediated by Lactobacillus rhamnosus GR-1 against inflammatory injury of bovine endometrial epithelial cells induced by E. coli[J]. Journal of Hebei Agricultural University, 2022, 45(2):99-106. (in Chinese) |
[19] | LIU J W, FENG X W, LI B T, et al. Lactobacillus rhamnosus GR-1 alleviates Escherichia coli-induced inflammation via NF-κB and MAPKs signaling in bovine endometrial epithelial cells[J]. Front Cell Infect Microbiol, 2022, 12:809674. |
[20] | ZHANG L Y, JIANG X, LIU X, et al. Growth, health, rumen fermentation, and bacterial community of holstein calves fed Lactobacillus rhamnosus GG during the preweaning stage[J]. J Anim Sci, 2019, 97(6):2598-2608. |
[21] | EWASCHUK J B, NAYLOR J M, CHIRINO-TREJO M, et al. Lactobacillus rhamnosus strain GG is a potential probiotic for calves[J]. Can J Vet Res, 2004, 68(4):249-253. |
[22] | EWASCHUK J B, WALKER J W, DIAZ H, et al. Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice[J]. J Nutr, 2006, 136(6):1483-1487. |
[23] | CATOZZI C, CUSCÓ A, LECCHI C, et al. Impact of intramammary inoculation of inactivated Lactobacillus rhamnosus and antibiotics on the milk microbiota of water buffalo with subclinical mastitis[J]. PLoS One, 2019, 14(1):e0210204. |
[24] | ZHANG L Y, LIU S, ZHAO X J, et al. Lactobacillus rhamnosus GG modulates gastrointestinal absorption, excretion patterns, and toxicity in Holstein calves fed a single dose of aflatoxin B1[J]. J Dairy Sci, 2019, 102(2):1330-1340. |
[25] | ZHANG W, ZHU Y H, YANG G Y, et al. Lactobacillus rhamnosus GG affects microbiota and suppresses autophagy in the intestines of pigs challenged with Salmonella infantis[J]. Front Microbiol, 2017, 8:2705. |
[26] | GAO K, WANG C, LIU L, et al. Immunomodulation and signaling mechanism of Lactobacillus rhamnosus GG and its components on porcine intestinal epithelial cells stimulated by lipopolysaccharide[J]. J Microbiol Immunol Infect, 2017, 50(5):700-713. |
[27] | YU J, ZHU Y H, YANG G Y, et al. Anti-inflammatory capacity of Lactobacillus rhamnosus GG in monophasic variant Salmonella infected piglets is correlated with impeding NLRP6-mediated host inflammatory responses[J]. Vet Microbiol, 2017, 210:91-100. |
[28] | YANG G Y, YU J, SU J H, et al. Oral administration of Lactobacillus rhamnosus GG ameliorates Salmonella infantis-induced inflammation in a pig model via activation of the IL-22bp/IL-22/stat3 pathway[J]. Front Cell Infect Microbiol, 2017, 7:323. |
[29] | ZHANG L, XU Y Q, LIU H Y, et al. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli k88 model of piglet diarrhoea:effects on diarrhoea incidence, faecal microflora and immune responses[J]. Vet Microbiol, 2010, 141(1-2):142-148. |
[30] | MAO J D, QI S R, CUI Y J, et al. Lactobacillus rhamnosus GG attenuates lipopolysaccharide-induced inflammation and barrier dysfunction by regulating MAPK/NF-κB signaling and modulating metabolome in the piglet intestine[J]. J Nutr, 2020, 150(5):1313-1323. |
[31] | ZHANG W, WU Q, ZHU Y H, et al. Probiotic Lactobacillus rhamnosus GG induces alterations in ileal microbiota with associated CD3-CD19-T-bet+IFNγ+/- cell subset homeostasis in pigs challenged with Salmonella enterica serovar 4, |
[5] | , 12:i:-[J]. Front Microbiol, 2019, 10:977. |
[32] | SPLICHALOVA A, JENISTOVA V, SPLICHALOVA Z, et al. Colonization of preterm gnotobiotic piglets with probiotic Lactobacillus rhamnosus GG and its interference with Salmonella typhimurium[J]. Clin Exp Immunol, 2019, 195(3):381-394. |
[33] | JIN Y B, CAO X, SHI C W, et al. Lactobacillus rhamnosus GG promotes early B lineage development and IgA production in the lamina propria in piglets[J]. J Immunol, 2021, 207(8):2179-2191. |
[34] | WANG Y, GONG L, WU Y P, et al. Oral administration of Lactobacillus rhamnosus GG to newborn piglets augments gut barrier function in pre-weaning piglets[J]. J Zhejiang Univ Sci B, 2019, 20(2):180-192. |
[35] | 焦连国. 猪源沙门菌分离鉴定及鼠李糖乳杆菌预防断奶仔猪腹泻效果研究[D]. 北京:中国农业大学, 2019.JIAO L G. Isolation and identification of Salmonella isolated from pigs and effects of Lactobacillus rhamnosus in preventing weaned diarrhea in piglets[D]. Beijing:China Agricultural University, 2019. (in Chinese) |
[36] | MAO X B, GU C S, HU H Y, et al. Dietary Lactobacillus rhamnosus GG supplementation improves the mucosal barrier function in the intestine of weaned piglets challenged by porcine rotavirus[J]. PLoS One, 2016, 11(1):e0146312. |
[37] | WU S P, YUAN L J, ZHANG Y G, et al. Probiotic Lactobacillus rhamnosus GG mono-association suppresses human rotavirus-induced autophagy in the gnotobiotic piglet intestine[J]. Gut Pathog, 2013, 5(1):22. |
[38] | LIU F N, LI G H, WEN K, et al. Lactobacillus rhamnosus GG on rotavirus-induced injury of ileal epithelium in gnotobiotic pigs[J]. J Pediatr Gastroenterol Nutr, 2013, 57(6):750-758. |
[39] | WEN K, TIN C, WANG H F, et al. Probiotic Lactobacillus rhamnosus GG enhanced TH1 cellular immunity but did not affect antibody responses in a human gut microbiota transplanted neonatal gnotobiotic pig model[J]. PLoS One, 2014, 9(4):e94504. |
[40] | MA K D, BAI Y S, LI J B, et al. Lactobacillus rhamnosus GG ameliorates deoxynivalenol-induced kidney oxidative damage and mitochondrial injury in weaned piglets[J]. Food Funct, 2022, 13(7):3905-3916. |
[41] | BAI Y S, MA K D, LI J B, et al. Lactobacillus rhamnosus GG ameliorates DON-induced intestinal damage depending on the enrichment of beneficial bacteria in weaned piglets[J]. J Anim Sci Biotechnol, 2022, 13(1):90. |
[42] | GARCÍA G R, PAYROS D, PINTON P, et al. Intestinal toxicity of deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants[J]. Arch Toxicol, 2018, 92(2):983-993. |
[43] | LI J Z, LI Q K, GAO N, et al. Exopolysaccharides produced by Lactobacillus rhamnosus GG alleviate hydrogen peroxide-induced intestinal oxidative damage and apoptosis through the Keap1/Nrf2 and Bax/Bcl-2 pathways in vitro[J]. Food Funct, 2021, 12(20):9632-9641. |
[44] | ZHANG W, ZHU Y H, YANG J C, et al. A selected Lactobacillus rhamnosus strain promotes EGFR-independent AKT activation in an enterotoxigenic Escherichia coli K88-infected IPEC-J2 cell model[J]. PLoS One, 2015, 10(4):e0125717. |
[45] | WU T, SHI Y T, ZHANG Y Y, et al. Lactobacillus rhamnosus LB1 alleviates enterotoxigenic Escherichia coli-induced adverse effects in piglets by improving host immune response and anti-oxidation stress and restoring intestinal integrity[J]. Front Cell Infect Microbiol, 2021, 11:724401. |
[46] | THOMAS D J, HUSMANN R J, VILLAMAR M, et al. Lactobacillus rhamnosus HN001 attenuates allergy development in a pig model[J]. PLoS One, 2011, 6(2):e16577. |
[47] | GOOD M, SODHI C P, OZOLEK J A, et al. Lactobacillus rhamnosus HN001 decreases the severity of necrotizing enterocolitis in neonatal mice and preterm piglets:evidence in mice for a role of TLR9[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 306(11):G1021-G1032. |
[48] | GENG T T, HE F, SU S, et al. Probiotics Lactobacillus rhamnosus GG ATCC53103 and lactobacillus plantarum JL01 induce cytokine alterations by the production of TCDA, DHA, and succinic and palmitic acids, and enhance immunity of weaned piglets[J]. Res Vet Sci, 2021, 137:56-67. |
[49] | SOLANO-AGUILAR G I, LAKSHMAN S, JANG S, et al. The effect of feeding cocoa powder and Lactobacillus rhamnosus on the composition and function of pig intestinal microbiome[J]. Curr Dev Nutr, 2018, 2(5):nzy011. |
[50] | PHILIPPEAU C, LETTAT A, MARTIN C, et al. Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high- or low-starch diets[J]. J Dairy Sci, 2017, 100(4):2637-2650. |
[51] | GENÍS S, BACH À, ARÍS A. Effects of intravaginal lactic acid bacteria on bovine endometrium:implications in uterine health[J]. Vet Microbiol, 2017, 204:174-179. |
[52] | GENÍS S, SÀNCHEZ-CHARDI A, BÀCH A, et al. A combination of lactic acid bacteria regulates Escherichia coli infection and inflammation of the bovine endometrium[J]. J Dairy Sci, 2017, 100(1):479-492. |
[53] | GENÍS S, BACH À, FÀBREGAS F, et al. Potential of lactic acid bacteria at regulating Escherichia coli infection and inflammation of bovine endometrium[J]. Theriogenology, 2016, 85(4):625-637. |
[54] | BARKO P C, MCMICHAEL M A, SWANSON K S, et al. The gastrointestinal microbiome:a review[J]. J Vet Intern Med, 2018, 32(1):9-25. |
[55] | MCFALL-NGAI M. Adaptive immunity:care for the community[J]. Nature, 2007, 445(7124):153. |
[56] | GOMAA E Z. Human gut microbiota/microbiome in health and diseases:a review[J]. Antonie Van Leeuwenhoek, 2020, 113(12):2019-2040. |
[57] | BRUCE A W, REID G. Intravaginal instillation of Lactobacilli for prevention of recurrent urinary tract infections[J]. Can J Microbiol, 1988, 34(3):339-343. |
[58] | SHELDON I M, CRONIN J G, BROMFIELD J J. Tolerance and innate immunity shape the development of postpartum uterine disease and the impact of endometritis in dairy cattle[J]. Annu Rev Anim Biosci, 2019, 7:361-384. |
[59] | LEBEER S, BRON P A, MARCO M L, et al. Identification of probiotic effector molecules:present state and future perspectives[J]. Curr Opin Biotechnol, 2018, 49:217-223. |
[60] | 吴 琼. 乳酸杆菌减轻大肠杆菌诱发奶牛乳腺上皮细胞炎性损伤的机理[D]. 北京:中国农业大学, 2018.WU Q. Lactobacillus attenuates inflammatory damage of bovine mammary epithelial cells infected with Escherichia coli[D]. Beijing:China Agricultural University, 2018. (in Chinese) |
[61] | VECKMAN V, MIETTINEN M, PIRHONEN J, et al. Streptococcus pyogenes and Lactobacillus rhamnosus differentially induce maturation and production of Th1-type cytokines and chemokines in human monocyte-derived dendritic cells[J]. J Leukoc Biol, 2004, 75(5):764-771. |
[62] | YOUNES J A, LIEVENS E, HUMMELEN R, et al. Women and their microbes:the unexpected friendship[J]. Trends Microbiol, 2018, 26(1):16-32. |
[63] | SWIDSINSKI A, MENDLING W, LOENING-BAUCKE V, et al. An adherent Gardnerella vaginalis biofilm persists on the vaginal epithelium after standard therapy with oral metronidazole[J]. Am J Obstet Gynecol, 2008, 198(1):97. e1-97. e6. |
[64] | VAN DE WIJGERT J, VERWIJS M C. Lactobacilli-containing vaginal probiotics to cure or prevent bacterial or fungal vaginal dysbiosis:a systematic review and recommendations for future trial designs[J]. BJOG Int J Obstet Gynaecol, 2020, 127(2):287-299. |
[65] | MATSUBARA V H, BANDARA H M H N, MAYER M P A, et al. Probiotics as antifungals in mucosal candidiasis[J]. Clin Infect Dis, 2016, 62(9):1143-1153. |
[66] | REID G, KIM S O, KÖHLER G A. Selecting, testing and understanding probiotic microorganisms[J]. FEMS Immunol Med Microbiol, 2006, 46(2):149-157. |
[67] | PETROVA M I, LIEVENS E, VERHOEVEN T L A, et al. The lectin-like protein 1 in Lactobacillus rhamnosus GR-1 mediates tissue-specific adherence to vaginal epithelium and inhibits urogenital pathogens[J]. Sci Rep, 2016, 6:37437. |
[68] | CORFIELD A P, BERRY M. Glycan variation and evolution in the eukaryotes[J]. Trends Biochem Sci, 2015, 40(7):351-359. |
[69] | REID G, LAM D, BRUCE A W, et al. Adhesion of Lactobacilli to urinary catheters and diapers:effect of surface properties[J]. J Biomed Mater Res, 1994, 28(6):731-734. |
[70] | REID G, TIESZER C, LAM D. Influence of lactobacilli on the adhesion of Staphylococcus aureus and Candida albicans to fibers and epithelial cells[J]. J Ind Microbiol, 1995, 15(3):248-253. |
[71] | RAINARD P, FOUCRAS G. A critical appraisal of probiotics for mastitis control[J]. Front Vet Sci, 2018, 5:251. |
[72] | PELLEGRINO M S, FROLA I D, NATANAEL B, et al. In vitro characterization of lactic acid bacteria isolated from bovine milk as potential probiotic strains to prevent bovine mastitis[J]. Probiotics Antimicrob Proteins, 2019, 11(1):74-84. |
[73] | HU X Y, LI S M, FU Y H, et al. Targeting gut microbiota as a possible therapy for mastitis[J]. Eur J Clin Microbiol Infect Dis, 2019, 38(8):1409-1423. |
[74] | 刘明超. 奶牛子宫内膜炎早期诊断及益生菌抗大肠杆菌诱导的子宫内膜上皮细胞炎性损伤作用机理[D]. 北京:中国农业大学, 2017.LIU M C. Early diagnosis of endometritis of dairy cows and the mechanism of probiotics against inflammatory injury of bovine endometrial epithelial cells induced by Escherichia coli[D]. Beijing:China Agricultural University, 2017. (in Chinese) |
[75] | DAVIES D, MEADE K G, HERATH S, et al. Toll-like receptor and antimicrobial peptide expression in the bovine endometrium[J]. Reprod Biol Endocrinol, 2008, 6:53. |
[76] | 何贝贝, 李天天, 朱玉华, 等. 不同生长性能猪肠道菌群差异分析[J]. 动物营养学报, 2014, 26(8):2327-2334.HE B B, LI T T, ZHU Y H, et al. Differential analysis of intestinal microflora in pigs with different growth performance[J]. Chinese Journal of Animal Nutrition, 2014, 26(8):2327-2334. (in Chinese) |
[77] | BISANZ J E, ENOS M K, MWANGA J R, et al. Randomized open-label pilot study of the influence of probiotics and the gut microbiome on toxic metal levels in Tanzanian pregnant women and school children[J]. mBio, 2014, 5(5):e01580-14. |
[78] | DAISLEY B A, MONACHESE M, TRINDER M, et al. Immobilization of cadmium and lead by Lactobacillus rhamnosus GR-1 mitigates apical-to-basolateral heavy metal translocation in a Caco-2 model of the intestinal epithelium[J]. Gut Microbes, 2019, 10(3):321-333. |
[1] | MENG Lu, HU Haiyan, DONG Lei, ZHENG Nan, WANG Jiaqi. Influence of Dairy Farm Environment on Mastitis Milk Microbiota via SourceTracker [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3872-3883. |
[2] | GUO Lingjun, ZHU Rui, LUO Yiqian, ZHANG Zhijin, ZHANG Yupeng, ZHANG Dezhi, LI Qianyong. Analysis of Blood Metabolites in Goat Chronic Distiller's Grain Poisoning and Expression Changes of Key Genes in Ethanol Poisoning Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1751-1765. |
[3] | GUO Rong, GUO Yazhou, WANG Shuai, YANG Chen, SU Yongxia, WU Chenchen, LU Hao, ZHAO Baoyu. Advances in Research on Poisonous Plants and Grazing Livestock Poisoning Diseases of Natural Grassland in China [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(5): 1171-1185. |
[4] | CUI Heng-min;CHEN Huai-tao;DENG Jun-liang;PENG Xi;LI De-bing. Pathology of Experimental Copper Toxicity in Ducklings [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2005, 36(7): 715-721. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||