Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (9): 2930-2943.doi: 10.11843/j.issn.0366-6964.2022.09.011
• ANIMAL GENETICS AND BREEDING • Previous Articles Next Articles
LI Xiaobo1,2, LIU Zhanfa3, LIU Yue2, CHEN Qian1,2, MA Yuehui2, ZHAO Qianjun2*, YE Shaohui1*
Received:
2022-02-22
Online:
2022-09-23
Published:
2022-09-23
CLC Number:
LI Xiaobo, LIU Zhanfa, LIU Yue, CHEN Qian, MA Yuehui, ZHAO Qianjun, YE Shaohui. Mining Genes Related to Wool Bending of Zhongwei Goat Based on WGCNA and GSEA[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2930-2943.
[1] | 刘占发, 马月辉.中卫山羊保护与利用方略[J].中国畜牧业, 2017(16):66-68.LIU Z F, MA Y H.Strategies for protection and utilization of Zhongwei goat[J].China Animal Industry, 2017(16):66-68.(in Chinese) |
[2] | SAXENA N, MOK K W, RENDL M.An updated classification of hair follicle morphogenesis[J].Exp Dermatol, 2019, 28(4):332-344. |
[3] | HOUSCHYAR K S, BORRELLI M R, TAPKING C, et al.Molecular mechanisms of hair growth and regeneration:current understanding and novel paradigms[J].Dermatology, 2020, 236(4):271-280. |
[4] | HYND P I, EDWARDS N M, HEBART M, et al.Wool fibre crimp is determined by mitotic asymmetry and position of final keratinisation and not ortho- and para-cortical cell segmentation[J].Animal, 2009, 3(6):838-843. |
[5] | YOSHIDA H, TAGUCHI H, HACHIYA A, et al.The natural trait of the curvature of human hair is correlated with bending of the hair follicle and hair bulb by a structural disparity in the root sheath[J].J Dermatol Sci, 2014, 75(3):195-199. |
[6] | KANG X L, LIU Y F, ZHANG J B, et al.Characteristics and expression profile of KRT71 screened by suppression subtractive hybridization cDNA library in curly fleece Chinese tan sheep[J].DNA Cell Biol, 2017, 36(7):552-564. |
[7] | MEDLAND S E, NYHOLT D R, PAINTER J N, et al.Common variants in the trichohyalin gene are associated with straight hair in Europeans[J].Am J Hum Genet, 2009, 85(5):750-755. |
[8] | MU F, RONG E G, JING Y, et al.Structural characterization and association of ovine dickkopf-1 gene with wool production and quality traits in Chinese merino[J].Genes (Basel), 2017, 8(12):400. |
[9] | SULAYMAN A, TIAN K C, HUANG X X, et al.Genome-wide identification and characterization of long non-coding RNAs expressed during sheep fetal and postnatal hair follicle development[J].Sci Rep, 2019, 9(1):8501. |
[10] | LIU H H, ZHANG J, YUAN J, et al.Gene coexpression network analysis reveals a novel metabolic mechanism of Clostridium acetobutylicum responding to phenolic inhibitors from lignocellulosic hydrolysates[J].Biotechnol Biofuels, 2020, 13:163. |
[11] | ZHAO W, LANGFELDER P, FULLER T, et al.Weighted gene coexpression network analysis:state of the art[J].J Biopharm Stat, 2010, 20(2):281-300. |
[12] | NANGRAJ A S, SELVARAJ G, KALIAMURTHI S, et al.Integrated PPI- and WGCNA-retrieval of hub gene signatures shared between Barrett's esophagus and esophageal adenocarcinoma[J].Front Pharmacol, 2020, 11:881. |
[13] | LIANG W W, SUN F F, ZHAO Y M, et al.Identification of susceptibility modules and genes for cardiovascular disease in diabetic patients using WGCNA analysis[J].J Diabetes Res, 2020, 2020:4178639. |
[14] | PANAHI B, HEJAZI M A.Weighted gene co-expression network analysis of the salt-responsive transcriptomes reveals novel hub genes in green halophytic microalgae Dunaliella salina[J].Sci Rep, 2021, 11(1):1607. |
[15] | SUBRAMANIAN A, TAMAYO P, MOOTHA V K, et al.Gene set enrichment analysis:A knowledge-based approach for interpreting genome-wide expression profiles[J].Proc Natl Acad Sci U S A, 2005, 102(43):15545-15550. |
[16] | LI J, XU X Q, PENG X T.NDC80 enhances cisplatin-resistance in triple-negative breast cancer[J].Arch Med Res, 2022, 53(4):378-387. |
[17] | KIM D, PERTEA G, TRAPNELL C, et al.TopHat2:accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions[J].Genome Biol, 2013, 14(4):R36. |
[18] | TRAPNELL C, PACHTER L, SALZBERG S L.TopHat:Discovering splice junctions with RNA-Seq[J].Bioinformatics, 2009, 25(9):1105-1111. |
[19] | BU D C, LUO H T, HUO P P, et al.KOBAS-i:Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis[J].Nucleic Acids Res, 2021, 49(W1):W317-W325. |
[20] | DENNIS G JR, SHERMAN B T, HOSACK D A, et al.DAVID:Database for annotation, visualization, and integrated discovery[J]. Genome Biol, 2003, 4(5):P3. |
[21] | LANGFELDER P, HORVATH S.WGCNA:An R package for weighted correlation network analysis[J].BMC Bioinformatics, 2008, 9:559. |
[22] | DAI W, CHANG Q, PENG W, et al.Network embedding the protein-protein interaction network for human essential genes identification[J].Genes (Basel), 2020, 11(2):153. |
[23] | SHANNON P, MARKIEL A, OZIER O, et al.Cytoscape:A software environment for integrated models of biomolecular interaction networks[J].Genome Res, 2003, 13(11):2498-2504. |
[24] | CHIN C H, CHEN S H, WU H H, et al.cytoHubba:identifying hub objects and sub-networks from complex interactome[J].BMC Syst Biol, 2014, 8 Suppl 4(Suppl 4):S11. |
[25] | REN Z H, SHANG G P, WU K, et al.WGCNA Co-expression network analysis reveals ILF3-AS1 functions as a CeRNA to regulate PTBP1 expression by sponging miR-29a in gastric cancer[J].Front Genet, 2020, 11:39. |
[26] | DING M C, LI F, WANG B, et al.A comprehensive analysis of WGCNA and serum metabolomics manifests the lung cancer-associated disordered glucose metabolism[J].J Cell Biochem, 2019, 120(6):10855-10863. |
[27] | WAN Q, TANG J, HAN Y, et al.Co-expression modules construction by WGCNA and identify potential prognostic markers of uveal melanoma[J].Exp Eye Res, 2018, 166:13-20. |
[28] | CHEN S L, YANG D, LEI C X, et al.Identification of crucial genes in abdominal aortic aneurysm by WGCNA[J].PeerJ, 2019, 7:e7873. |
[29] | TIAN Z, HE W, TANG J, et al.Identification of important modules and biomarkers in breast cancer based on WGCNA[J].Onco Targets Ther, 2020, 13:6805-6817. |
[30] | HARLAND D P, VERNON J A, WOODS J L, et al.Intrinsic curvature in wool fibres is determined by the relative length of orthocortical and paracortical cells[J].J Exp Biol, 2018, 221(6):jeb172312. |
[31] | CHEN Y, FAN Z M, WANG X X, et al.PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration[J].Stem Cell Res Ther, 2020, 11(1):144. |
[32] | BELMADANI A, JUNG H, REN D J, et al.The chemokine SDF-1/CXCL12 regulates the migration of melanocyte progenitors in mouse hair follicles[J].Differentiation, 2009, 77(4):395-411. |
[33] | HARMON C S, NEVINS T D.Evidence that activation of protein kinase A inhibits human hair follicle growth and hair fibre production in organ culture and DNA synthesis in human and mouse hair follicle organ culture[J].Br J Dermatol, 1997, 136(6):853-858. |
[34] | DROSTEN M, LECHUGA C G, BARBACID M.Ras signaling is essential for skin development[J].Oncogene, 2014, 33(22):2857-2865. |
[35] | SOHN K M, JEONG K H, KIM J E, et al.Hair growth-promotion effects of different alternating current parameter settings are mediated by the activation of Wnt/β-catenin and MAPK pathway[J].Exp Dermatol, 2015, 24(12):958-963. |
[36] | LI S M, CHEN W S, ZHENG X T, et al.Comparative investigation of coarse and fine wool sheep skin indicates the early regulators for skin and wool diversity[J].Gene, 2020, 758:144968. |
[37] | WANG E, HAREL S, CHRISTIANO A M.JAK-STAT signaling jump starts the hair cycle[J].J Invest Dermatol, 2016, 136(11):2131-2132. |
[38] | TRIPURANI S K, WANG Y, FAN Y X, et al.Suppression of Wnt/β-catenin signaling by EGF receptor is required for hair follicle development[J].Mol Biol Cell, 2018, 29(22):2784-2799. |
[39] | ZHU H L, GAO Y H, YANG J Q, et al.Serenoa repens extracts promote hair regeneration and repair of hair loss mouse models by activating TGF-β and mitochondrial signaling pathway[J].Eur Rev Med Pharmacol Sci, 2018, 22(12):4000-4008. |
[40] | SIMONETTI O, LUCARINI G, BERNARDINI M L, et al.Expression of vascular endothelial growth factor, apoptosis inhibitors (survivin and p16) and CCL27 in alopecia areata before and after diphencyprone treatment:an immunohistochemical study[J].Br J Dermatol, 2004, 150(5):940-948. |
[41] | ADACHI T, KOBAYASHI T, SUGIHARA E, et al.Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma[J].Nat Med, 2015, 21(11):1272-1279. |
[42] | BAYLE J, FITCH J, JACOBSEN K, et al.Increased expression of Wnt2 and SFRP4 in Tsk mouse skin:Role of Wnt signaling in altered dermal fibrillin deposition and systemic sclerosis[J].J Invest Dermatol, 2008, 128(4):871-881. |
[43] | NACHURY M V, MICK D U.Establishing and regulating the composition of cilia for signal transduction[J].Nat Rev Mol Cell Biol, 2019, 20(7):389-405. |
[44] | LIM C H, SUN Q, RATTI K, et al.Hedgehog stimulates hair follicle neogenesis by creating inductive dermis during murine skin wound healing[J].Nat Commun, 2018, 9(1):4903. |
[45] | LEE Y J, PARK S H, PARK H R, et al.Mesenchymal stem cells antagonize IFN-induced proinflammatory changes and growth inhibition effects via Wnt/β-catenin and JAK/STAT pathway in human outer root sheath cells and hair follicles[J].Int J Mol Sci, 2021, 22(9):4581. |
[1] | WANG Xin, NIE Tong, LI Aqun, MA Jun. Hesperidin Alleviates High-fat-diet Induced Hepatic Oxidative Stress in Mice via Oxidative Phosphorylation Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1302-1313. |
[2] | HU Ting, ZHANG Yonghong, HOU Xiaolin, YAO Hua, CUI Defeng, PAN Zaozao, ZHANG Lingyu, ZHANG Jiaxi, WU Qiong. The Effects of Bisphenol A on Inflammation and Amino Acid Metabolism Pathways in Porcine Testis Sertoli Cells Based on Transcriptome Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2858-2871. |
[3] | DONG Yajie, HAO Xiaojing, WU Jinqiang, WANG Rong, ZHANG Pengxiang, WANG Haidong, HE Xiaoyan. Exploration of the Effect of SHH on Wool Bending through Krox20 Regulation of IGFBP5 Expression Based on Sheep Keratinocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2365-2375. |
[4] | WANG Zixuan, WANG Qiao, ZHANG Jin, Astrid Lissette Barreto Sánchez, ZHENG Maiqing, LI Qinghe, CUI Huanxian, AN Bingxing, ZHAO Guiping, WEN Jie, LI Hegang. Transcriptome Based Screening of Functional Genes Related to Heat Stress Resistance in Beijing You Chickens and Guangming Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1905-1914. |
[5] | LIU Yuanyi, LI Xinyu, Bayinnamula, CUI Fang, MANG Lai, DU Ming. Single-Cell Transcriptome Sequencing Technology and its Application in Animal Reproduction [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 421-433. |
[6] | MAO Yanni, CHANG Jiawei, LI Na, WANG Xin, KANG Xinyun, MA Qiang, MA Liang, WANG Guiqin. Transcriptome Differential Expression Analysis of Staphylococcus aureus in Biofilm State and Planktonic State [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2697-2707. |
[7] | ZHAO Di, KANG Huimin, TAN Xiaodong, LIU Ranran, ZHANG Zhengfen, LI Hua, ZHAO Guiping. Screening of Candidate Genes for Carcass Traits of Tiannong Partridge Chicken Using Weighted Gene Co-expression Network Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2130-2140. |
[8] | LUO Jinhong, CHEN Xiang, SHANG Yishun, AO Ye, LI Pengcheng. Transcriptome Sequencing Screening the Genes Related to Goat Embryo Attachment in Early Pregnancy [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1465-1474. |
[9] | WANG Luyao, HAO Xuepiao, LEI Baishi, ZHAO Kuan, ZHANG Wuchao, YUAN Wanzhe. Differential Expression of Transcriptome in Liver, Thymus and Ileum of Ducks Infected with Novel Goose Parvovirus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 654-657. |
[10] | LI Jie, ZHAO Ruipeng, CHEN Chuwen, YANG Chaowu, WU Jinbo, LI Zhixiong. Screening of the Differentially Expressed mRNA and lncRNA and the Construction of Their Competitive Regulatory Network in Embryonic Leg Muscles of Different Chicken Breeds [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4207-4220. |
[11] | LI Wufeng, QIU Lixia, GUAN Jiawei, LI Li, DU Min. Research of the Regulatory Network of Genes and Metabolites Related to Meat Tenderness Based on WGCNA Technology in Donkey [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3827-3841. |
[12] | TIAN Yaqing, CUI Lixin, HAO Haisheng, ZOU Huiying, PANG Yunwei, ZHAO Xueming, ZHU Huabin, DU Weihua. Effects of ASH1L Knockdown on mRNA Profiling in Bovine Cumulus Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 151-160. |
[13] | LI Zhixiong, XU Yaou, LIN Yaqiu, YANG Chaowu, YU Chunlin, WU Jinbo, CHEN Ling. Effect of miR-499-5p Injection on Transcriptome in Gastrocnemius Muscle of Broiler [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(9): 2098-2108. |
[14] | PAN Yong, LIU Lijuan, YANG Yang, LI Chen, MA Guangqiang, YANG Qi. Prediction and Validation of Small RNA GcvB Target Gene of Salmonella Typhimurium [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(4): 894-898. |
[15] | SHI Tianpei, HOU Haobin, WANG Xinyue, ZHAO Zhida, SHANG Mingyu, ZHANG Li. Weighted Gene Co-expression Network Analysis for Embryo Development of Skeletal Muscle in Chinese Merino Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(3): 452-464. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||