Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (8): 2490-2501.doi: 10.11843/j.issn.0366-6964.2022.08.008
• REVIEW • Previous Articles Next Articles
SHAO Changxuan, DANG Ankai, ZHAN Zhaohan, LAI Zhenheng, ZHU Yongjie, SHAN Anshan*
Received:
2021-12-07
Online:
2022-08-23
Published:
2022-08-23
CLC Number:
SHAO Changxuan, DANG Ankai, ZHAN Zhaohan, LAI Zhenheng, ZHU Yongjie, SHAN Anshan. Development and Application Strategy of Beta Sheet Antimicrobial Peptides[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2490-2501.
[1] | SCOTT H M, ACUFF G, BERGERON G, et al. Critically important antibiotics:criteria and approaches for measuring and reducing their use in food animal agriculture[J]. Ann N Y Acad Sci, 2019, 1441(1):8-16. |
[2] | 雷 龙, 周 颖, 李俊杰, 等. 从欧盟禁抗看国内无抗的趋势[J]. 广东饲料, 2020, 29(10):11-14.LEI L, ZHOU Y, LI J J, et al. Looking at the trend of domestic non-resistance from the EU's anti-resistance ban[J]. Guangdong Feed, 2020, 29(10):11-14. (in Chinese) |
[3] | 李 静. 抗菌肽的生物学特性及在畜禽养殖中的应用[J]. 现代畜牧科技, 2021(9):23-24.LI J. Biological functions of antimicrobial peptides and its application in livestock and poultry breeding[J]. Modern Animal Husbandry Science & Technology, 2021(9):23-24. (in Chinese) |
[4] | MAHLAPUU M, BJÖRN C, EKBLOM J. Antimicrobial peptides as therapeutic agents:opportunities and challenges[J]. Crit Rev Biotechnol, 2020, 40(7):978-992. |
[5] | SHAO C X, ZHU Y J, LAI Z H, et al. Antimicrobial peptides with protease stability:progress and perspective[J]. Future Med Chem, 2019, 11(16):2047-2050. |
[6] | WANG G S. Improved methods for classification, prediction, and design of antimicrobial peptides[M]//ZHOU P, HUANG J. Computational Peptidology. New York:Humana Press, 2015:43-66. |
[7] | KOEHBACH J, CRAIK D J. The vast structural diversity of antimicrobial peptides[J]. Trends Pharmacol Sci, 2019, 40(7):517-528. |
[8] | 巫春旭, 卢雪梅, 金小宝, 等.天蚕素类抗菌肽分子设计研究进展[J]. 中国生物工程杂志, 2016, 36(2):96-100.WU C X, LU X M, JIN X B, et al. Advances in research on molecular design of cecropin-like peptides[J]. China Biotechnology, 2016, 36(2):96-100. (in Chinese) |
[9] | AMOS S B T A, VERMEER L S, FERGUSON P M, et al. Antimicrobial peptide potency is facilitated by greater conformational flexibility when binding to gram-negative bacterial inner membranes[J]. Sci Rep, 2016, 6(1):37639. |
[10] | WANG C K, CRAIK D J. Designing macrocyclic disulfide-rich peptides for biotechnological applications[J]. Nat Chem Biol, 2018, 14(5):417-427. |
[11] | WANG J J, DOU X J, SONG J, et al. Antimicrobial peptides:promising alternatives in the post feeding antibiotic era[J]. Med Res Rev, 2019, 39(3):831-859. |
[12] | BASTOS P, TRINDADE F, DA COSTA J, et al. Human antimicrobial peptides in bodily fluids:current knowledge and therapeutic perspectives in the postantibiotic era[J]. Med Res Rev, 2018, 38(1):101-146. |
[13] | TORRES A M, KUCHEL P W. The β-defensin-fold family of polypeptides[J]. Toxicon, 2004, 44(6):581-588. |
[14] | POWERS J P S, HANCOCK R E W. The relationship between peptide structure and antibacterial activity[J]. Peptides, 2003, 24(11):1681-1691. |
[15] | LEE J H, SHIN S M. Understanding β-hairpin formation:computational studies for three different hairpins[J]. Bull Korean Chem Soc, 2008, 29(4):741-748. |
[16] | PANTELEEV P V, BALANDIN S V, IVANOV V T, et al. A therapeutic potential of animal β-hairpin antimicrobial peptides[J]. Curr Med Chem, 2017, 24(17):1724-1746. |
[17] | SHAFEE T M A, LAY F T, PHAN T K, et al. Convergent evolution of defensin sequence, structure and function[J]. Cell Mol Life Sci, 2017, 74(4):663-682. |
[18] | GAO X H, DING J Q, LIAO C B, et al. Defensins:the natural peptide antibiotic[J]. Adv Drug Deliv Rev, 2021, 179:114008. |
[19] | ANDERSSON H S, FIGUEREDO S M, HAUGAARD-KEDSTRÖM L M, et al. The α-defensin salt-bridge induces backbone stability to facilitate folding and confer proteolytic resistance[J]. Amino Acids, 2012, 43(4):1471-1483. |
[20] | HOSSAIN F, MOGHAL M R, ISLAM Z, et al. Membrane potential is vital for rapid permeabilization of plasma membranes and lipid bilayers by the antimicrobial peptide lactoferricin B Membrane potential is vital for AMP-induced permeabilization[J]. J Biol Chem, 2019, 294(27):10449-10462. |
[21] | FEHLBAUM P, BULET P, CHERNYSH S, et al. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides[J]. Proc Natl Acad Sci U S A, 1996, 93(3):1221-1225. |
[22] | SELSTED M E, HARWIG S S, GANZ T, et al. Primary structures of three human neutrophil defensins[J]. J Clin Invest, 1985, 76(4):1436-1439. |
[23] | DE LEEUW E, BURKS S R, LI X Q, et al. Structure-dependent functional properties of human defensin 5[J]. FEBS Lett, 2007, 581(3):515-520. |
[24] | SILVA P I JR, DAFFRE S, BULET P. Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family[J]. J Biol Chem, 2000, 275(43):33464-33470. |
[25] | PARK C H, VALORE E V, WARING A J, et al. Hepcidin, a urinary antimicrobial peptide synthesized in the liver[J]. J Biol Chem, 2001, 276(11):7806-7810. |
[26] | 施益如, 李 暄, 蔡明烩, 等. 抗菌肽Protegrin-1的研究进展[J]. 中国畜牧杂志, 2021, 57(6):67-72.SHI Y R, LI X, CAI M H, et al. Research progress on antimicrobial peptide protegrin-1[J]. Chinese Journal of Animal Science, 2021, 57(6):67-72. (in Chinese) |
[27] | NAKAMURA T, FURUNAKA H, MIYATA T, et al. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure[J]. J Biol Chem, 1988, 263(32):16709-16713. |
[28] | HUBER A, GALGÓCZY L, VÁRADI G, et al. Two small, cysteine-rich and cationic antifungal proteins from Penicillium chrysogenum:a comparative study of PAF and PAFB[J]. Biochim Biophys Acta Biomembr, 2020, 1862(8):183246. |
[29] | PAVITHRRA G, RAJASEKARAN R. Gramicidin peptide to combat antibiotic resistance:a review[J]. Int J Pept Res Ther, 2020, 26(1):191-199. |
[30] | WANG G S. Human antimicrobial peptides and proteins[J]. Pharmaceuticals (Basel, Switzerland), 2014, 7(5):545-594. |
[31] | WANG Q, REN M J, LIU X Y, et al. Peptidoglycan recognition proteins in insect immunity[J]. Mol Immunol, 2019, 106:69-76. |
[32] | WANG Y P, LAI R. Insect antimicrobial peptides:structures, properties and gene regulation[J]. Dongwuxue Yanjiu, 2010, 31(1):27-34. |
[33] | BARBAULT F, LANDON C, GUENNEUGUES M, et al. Solution structure of Alo-3:a new knottin-type antifungal peptide from the insect Acrocinus longimanus[J]. Biochemistry, 2003, 42(49):14434-14442. |
[34] | ISOZUMI N, MASUBUCHI Y, IMAMURA T, et al. Structure and antimicrobial activity of NCR169, a nodule-specific cysteine-rich peptide of Medicago truncatula[J]. Sci Rep, 2021, 11(1):9923. |
[35] | TAM J P, WANG S J, WONG K H, et al. Antimicrobial peptides from plants[J]. Pharmaceuticals (Basel, Switzerland), 2015, 8(4):711-757. |
[36] | 陈 鹏. 细菌素在动物饲料中的替抗应用[J]. 饲料研究, 2021, 44(18):150-153.CHEN P. Antibiotic replacement application of bacteriocins in animal feed[J]. Feed Research, 2021, 44(18):150-153. (in Chinese) |
[37] | BROGDEN K A. Antimicrobial peptides:pore formers or metabolic inhibitors in bacteria?[J]. Nat Rev Microbiol, 2005, 3(3):238-250. |
[38] | MOOKHERJEE N, ANDERSON M A, HAAGSMAN H P, et al. Antimicrobial host defence peptides:functions and clinical potential[J]. Nat Rev Drug Discov, 2020, 19(5):311-332. |
[39] | LI S Q, WANG Y J, XUE Z H, et al. The structure-mechanism relationship and mode of actions of antimicrobial peptides:A review[J]. Trends Food Sci Technol, 2021, 109:103-115. |
[40] | 张 溪, 弓 磊. 抗菌肽抗菌机制及研究热点[J]. 中国组织工程研究, 2020, 24(10):1634-1640.ZHANG X, GONG L. Antimicrobial mechanism of antimicrobial peptide and research progress[J]. Chinese Journal of Tissue Engineering Research, 2020, 24(10):1634-1640. (in Chinese) |
[41] | BELLAMY W, TAKASE M, WAKABAYASHI H, et al. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin[J]. J Appl Bacteriol, 1992, 73(6):472-479. |
[42] | SINHA S, NG W J, BHATTACHARJYA S. NMR structure and localization of the host defense antimicrobial peptide thanatin in zwitterionic dodecylphosphocholine micelle:Implications in antimicrobial activity[J]. Biochim Biophys Acta Biomembr, 2020, 1862(11):183432. |
[43] | MANI R, CADY S D, TANG M, et al. Membrane-dependent oligomeric structure and pore formation of a β-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR[J]. Proc Natl Acad Sci U S A, 2006, 103(44):16242-16247. |
[44] | JENSSEN H, HAMILL P, HANCOCK R E W. Peptide antimicrobial agents[J]. Clin Microbiol Rev, 2006, 19(3):491-511. |
[45] | DE LEEUW E, LI C Q, ZENG P Y, et al. Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II[J]. FEBS Lett, 2010, 584(8):1543-1548. |
[46] | CHO J, LEE D G. The antimicrobial peptide arenicin-1 promotes generation of reactive oxygen species and induction of apoptosis[J]. Biochim Biophys Acta Gen Subj, 2011, 1810(12):1246-1251. |
[47] | OVCHINNIKOVA T V, ALESHINA G M, BALANDIN S V, et al. Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaeta Arenicola marina[J]. FEBS Lett, 2004, 577(1-2):209-214. |
[48] | SHAH P, CHEN C S. Systematical screening of intracellular protein targets of polyphemusin-I using Escherichia coli proteome microarrays[J]. Int J Mol Sci, 2021, 22(17):9158. |
[49] | ZHAN J, JIA H S, SEMCHENKO E A, et al. Self-derived structure-disrupting peptides targeting methionine aminopeptidase in pathogenic bacteria:a new strategy to generate antimicrobial peptides[J]. FASEB J, 2019, 33(2):2095-2104. |
[50] | SONG J, WANG J J, ZHAN N, et al. Therapeutic potential of trp-rich engineered amphiphiles by single hydrophobic amino acid end-tagging[J]. ACS Appl Mater Interfaces, 2019, 11(47):43820-43834. |
[51] | TAKAHASHI D, SHUKLA S K, PRAKASH O, et al. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity[J]. Biochimie, 2010, 92(9):1236-1241. |
[52] | BENFIELD A H, DEFAUS S, LAWRENCE N, et al. Cyclic gomesin, a stable redesigned spider peptide able to enter cancer cells[J]. Biochim Biophys Acta Biomembr, 2021, 1863(1):183480. |
[53] | DONG N, ZHU X, CHOU S, et al. Antimicrobial potency and selectivity of simplified symmetric-end peptides[J]. Biomaterials, 2014, 35(27):8028-8039. |
[54] | VINEETHKUMAR T V, ASHA R, SHYLA G, et al. Post-translationally modified frog skin-derived antimicrobial peptides are effective against Aeromonas sobria[J]. Microb Pathog, 2017, 104:287-288. |
[55] | GOMES B, AUGUSTO M T, FELÍCIO M R, et al. Designing improved active peptides for therapeutic approaches against infectious diseases[J]. Biotechnol Adv, 2018, 36(2):415-429. |
[56] | LEI R Y, HOU J C, CHEN Q X, et al. Self-assembling myristoylated human α-defensin 5 as a next-generation nanobiotics potentiates therapeutic efficacy in bacterial infection[J]. ACS Nano, 2018, 12(6):5284-5296. |
[57] | IMURA Y, NISHIDA M, OGAWA Y, et al. Action mechanism of tachyplesin I and effects of PEGylation[J]. Biochim Biophys Acta Biomembr, 2007, 1768(5):1160-1169. |
[58] | CHAN L Y, ZHANG V M, HUANG Y H, et al. Cyclization of the antimicrobial peptide gomesin with native chemical ligation:influences on stability and bioactivity[J]. ChemBioChem, 2013, 14(5):617-624. |
[59] | FOX M A, THWAITE J E, ULAETO D O, et al. Design and characterization of novel hybrid antimicrobial peptides based on cecropin A, LL-37 and magainin II[J]. Peptides, 2012, 33(2):197-205. |
[60] | BALABAN N, GOV Y, GIACOMETTI A, et al. A chimeric peptide composed of a dermaseptin derivative and an RNA III-inhibiting peptide prevents graft-associated infections by antibiotic-resistant staphylococci[J]. Antimicrob Agents Chemother, 2004, 48(7):2544-2550. |
[61] | LIU Y F, XIA X, XU L, et al. Design of hybrid β-hairpin peptides with enhanced cell specificity and potent anti-inflammatory activity[J]. Biomaterials, 2013, 34(1):237-250. |
[62] | TORRES M D T, SOTHISELVAM S, LU T K, et al. Peptide design principles for antimicrobial applications[J]. J Mol Biol, 2019, 431(18):3547-3567. |
[63] | SHAO C X, ZHU Y J, JIAN Q, et al. Cross-strand interaction, central bending, and sequence pattern act as biomodulators of simplified β-hairpin antimicrobial amphiphiles[J]. Small, 2021, 17(7):2003899. |
[64] | WU H, ONG Z Y, LIU S Q, et al. Synthetic β-sheet forming peptide amphiphiles for treatment of fungal keratitis[J]. Biomaterials, 2015, 43:44-49. |
[65] | CHOU S, WANG J J, SHANG L, et al. Short, symmetric-helical peptides have narrow-spectrum activity with low resistance potential and high selectivity[J]. Biomater Sci, 2019, 7(6):2394-2409. |
[66] | HAMMAMI R, FLISS I. Current trends in antimicrobial agent research:chemo- and bioinformatics approaches[J]. Drug Discovery Today, 2010, 15(13-14):540-546. |
[67] | CHERKASOV A, HILPERT K, JENSSEN H, et al. Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs[J]. ACS Chem Biol, 2009, 4(1):65-74. |
[68] | FJELL C D, JENSSEN H, CHEUNG W A, et al. Optimization of antibacterial peptides by genetic algorithms and cheminformatics[J]. Chem Biol Drug Des, 2011, 77(1):48-56. |
[69] | 李丘轲, 李金泽, 吴 华, 等. 靶向抗菌肽的设计策略与应用[J]. 畜牧兽医学报, 2020, 51(2):243-251.LI Q K, LI J Z, WU H, et al. Design strategy and application on targeted antimicrobial peptides[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(2):243-251. (in Chinese) |
[70] | 邓赣奇, 黄增颖, 梁耀文, 等. "减抗"、"替抗"背景下抗菌肽的应用和研究进展[J]. 家畜生态学报, 2020, 41(6):1-7.DENG G Q, HUANG Z Y, LIANG Y W, et al. Application and research advance of antimicrobial peptide[J]. Acta Ecologiae Animalis Domastici, 2020, 41(6):1-7. (in Chinese) |
[71] | ECKERT R, QI F X, YARBROUGH D K, et al. Adding selectivity to antimicrobial peptides:rational design of a multidomain peptide against Pseudomonas spp[J]. Antimicrob Agents Chemother, 2006, 50(4):1480-1488. |
[72] | URBAN P, VALLE-DELGADO J J, MOLES E, et al. Nanotools for the delivery of antimicrobial peptides[J]. Curr Drug Targets, 2012, 13(9):1158-1172. |
[73] | PARDHI D M, KARAMAN D ?瘙 塁, TIMONEN J, et al. Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens[J]. Int J Pharm, 2020, 586:119531. |
[74] | SOUSA M G C, REZENDE T M B, FRANCO O L. Nanofibers as drug-delivery systems for antimicrobial peptides[J]. Drug Discov Today, 2021, 26(8):2064-2074. |
[75] | 康芷若, 王如霞, 陈梦涵, 等. 纳米材料作为抗菌肽递送载体的研究进展[J]. 动物医学进展, 2021, 42(6):97-102.KANG Z R, WANG R X, CHEN M H, et al. Progress on nanomaterials as vehicles for delivery of antimicrobial peptides[J]. Progress in Veterinary Medicine, 2021, 42(6):97-102. (in Chinese) |
[76] | STOLNIK S, ILLUM L, DAVIS S S. Long circulating microparticulate drug carriers[J]. Adv Drug Deliv Rev, 2012, 64:290-301. |
[77] | GERA S, KANKURI E, KOGERMANN K. Antimicrobial peptides-unleashing their therapeutic potential using nanotechnology[J]. Pharmacol Ther, 2022, 232:107990. |
[78] | TEIXEIRA M C, CARBONE C, SOUSA M C, et al. Nanomedicines for the delivery of antimicrobial peptides (AMPs)[J]. Nanomaterials (Basel), 2020, 10(3):560. |
[79] | HANEY E F, HUNTER H N, MATSUZAKI K, et al. Solution NMR studies of amphibian antimicrobial peptides:linking structure to function?[J]. Biochim Biophys Acta Biomembr, 2009, 1788(8):1639-1655. |
[80] | LAZZARO B P, ZASLOFF M, ROLFF J. Antimicrobial peptides:application informed by evolution[J]. Science, 2020, 368(6490):eaau5480. |
[81] | KIM J M, JANG S J, YANG M H, et al. Characterization of antibacterial activity and synergistic effect of cationic antibacterial peptide-resin conjugates[J]. Bull Korean Chem Soc, 2011, 32(11):3928-3932. |
[82] | 刘又铭, 房 鑫, 陈 璐, 等. 牛乳源肽Lfcin B抗菌活性、稳定性及协同效应研究[J]. 饲料工业, 2021, 42(3):49-53.LIU Y M, FANG X, CHEN L, et al. Study on antibacterial activity, stability and synergistic effect of Lactoferricin Bovine[J]. Feed Industry, 2021, 42(3):49-53. (in Chinese) |
[1] | HUANG Jie, RUAN Zihao, CAI Rui. Advances of the Application of Antimicrobial Peptides in the Preservation of Porcine Semen at Room Temperature [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1401-1411. |
[2] | SUN Dong, CAI Yinchuan, JIANG Siyu, LI Xuan, HAO Gang. Molecular Design, Structure and Activity Analysis of Antimicrobial Peptide Tachyplesin I [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1905-1913. |
[3] | HONG Mian, HUANG Jiamin, CHEN Dongmei, XIE Shuyu. Research Progress of Nanotechnology to Enhance Antibacterial Efficacy of Antibacterial Drugs [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3731-3736. |
[4] | SHI Chao-feng, YIN Zhong-qiong,WEI Qin,JIA Ren-yong. Bacteriostatic Action and Mechanism of α-terpineol on Escherichia coli [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2013, 44(5): 796-801. |
[5] | CHEN Yu-xian,ZHOU Tong,XIE Kun-peng,YUN Bao-yi,XIE Ming-jie. Antibacterial Mechanism of Baicalein on Methicillin-resistant Staphyloccocus aureus [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2013, 44(12): 2000-2006. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||