Acta Veterinaria et Zootechnica Sinica ›› 2021, Vol. 52 ›› Issue (6): 1447-1460.doi: 10.11843/j.issn.0366-6964.2021.06.001
• REVIEW • Previous Articles Next Articles
ZHU Bo1,2,3*, LI Hongwei1, ZHOU Peinuo1, LI Qian1, GAO Han1, WANG Zezhao1, WANG Congyong3, CAI Wentao1, XU Lingyang1, CHEN Yan1, ZHANG Lupei1, GAO Xue1, GAO Huijiang1,2,3, LI Junya1,2,3*
Received:
2020-11-11
Online:
2021-06-23
Published:
2021-06-22
CLC Number:
ZHU Bo, LI Hongwei, ZHOU Peinuo, LI Qian, GAO Han, WANG Zezhao, WANG Congyong, CAI Wentao, XU Lingyang, CHEN Yan, ZHANG Lupei, GAO Xue, GAO Huijiang, LI Junya. Overview of Genetic Evaluation System of Beef Cattle in China and Abroad[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(6): 1447-1460.
[1] | 朱波,李姣,汪聪勇,等.我国肉用西门塔尔牛群体生长发育性状遗传参数估计及其遗传进展[J].畜牧兽医学报,2020,51(8):1833-1844.ZHU B,LI J,WANG C Y,et al.Genetic parameter and genetic gain estimation for growth and development traits in Chinese Simmental beef cattle[J].Acta Veterinaria et Zootechnica Sinica,2020,51(8):1833-1844.(in Chinese) |
[2] | MIDDLETON B K,GIBB J B.An overview of beef cattle improvement programs in the United States[J].J Anim Sci,1991,69(9):3861-3871. |
[3] | BARKHOUSE K L,VAN VLECK L D,CUNDIFF L V,et al.Comparison of sire breed solutions for growth traits adjusted by mean expected progeny differences to a 1993 base[J].J Anim Sci,1998,76(9):2287-2293. |
[4] | ZAHRÁDKOVÁ R,BARTOÑ L,BUREŠ D,et al.Comparison of growth performance and slaughter characteristics of Limousin and Charolais heifers[J].Arch Anim Breed,2010,53(5):520-528. |
[5] | CHAMBAZ A,SCHEEDER M R L,KREUZER M,et al.Meat quality of Angus,Simmental,Charolais and Limousin steers compared at the same intramuscular fat content[J].Meat Sci,2003,63(4):491-500. |
[6] | LUNT D K,RILEY R R,SMITH S B.Growth and carcass characteristics of Angus and American Wagyu steers[J].Meat Sci,1993,34(3):327-334. |
[7] | DE MELO COSTA C C,MAIA A S C,NASCIMENTO S T,et al.Thermal balance of Nellore cattle[J].Int J Biometeorol, 2018,62(5):723-731. |
[8] | FAÇANHA D A E,FERREIRA J B,LEITE J H G M,et al.The dynamic adaptation of Brazilian Brahman bulls[J].J Therm Biol,2019,81:128-136. |
[9] | PHELPS K J,JOHNSON D D,ELZO M A,et al.Effect of Brahman genetics on myofibrillar protein degradation,collagen crosslinking,and tenderness of the longissimus lumborum[J].J Anim Sci,2017,95(12):5397-5406. |
[10] | HENDERSON C R.Rapid method for computing the inverse of a relationship matrix[J].J Dairy Sci,1975,58(11):1727-1730. |
[11] | CR R.Multivariate analysis[J].Indian J Stat,1983,45(2):284-299. |
[12] | HARVILLE D A.Maximum likelihood approaches to variance component estimation and to related problems[J].J Am Stat Assoc,1977,72(358):320-338. |
[13] | PATTERSON H D,THOMPSON R.Recovery of inter-block information when block sizes are unequal[J].Biometrika, 1971,58(3):545-554. |
[14] | CHALONER K.A bayesian approach to the estimation of variance components for the unbalanced one-way random model[J].Technometrics,1987,29(3):323-337. |
[15] | 郑伟杰,李厚诚,苏丁然,等.国际奶牛遗传评估体系概况[J].中国畜牧杂志,2020,56(6):161-168.ZHENG W J,LI H C,SU D R,et al.General status of international genetic evaluation system of dairy cattle[J].Chinese Journal of Animal Science,2020,56(6):161-168.(in Chinese) |
[16] | BOLDMAN K G,KRIESE L A,VAN VLECK L D,et al.A manual for use of MTDFREML:a set of programs to obtain estimates of variances and covariances[DRAFT] [R].Washington,DC:ARS-USDA,1995. |
[17] | LOURENCO D,LEGARRA A,TSURUTA S,et al.Single-step genomic evaluations from theory to practice:using SNP chips and sequence data in BLUPF90[J].Genes (Basel),2020,11(7):790. |
[18] | GILMOUR A R,GOGEL B J,CULLIS B R,et al.ASReml user guide release 4.1 structural specification[M].Hemel Hempstead:VSN International Ltd.,2015. |
[19] | MADSEN P,JENSEN J.DMU:a user's guide.a package for analysing multivariate mixed models[M].Denmark:DJF,Foulum,2008. |
[20] | GARRICK D J.The nature,scope and impact of genomic prediction in beef cattle in the United States[J].Genet Sel Evol,2011,43(1):17. |
[21] | MEUWISSEN T H,HAYES B J,GODDARD M E.Prediction of total genetic value using genome-wide dense marker maps[J].Genetics,2001,157(4):1819-1829. |
[22] | OLIVEIRA H R,BRITO L F,SILVA F F,et al.Genomic prediction of lactation curves for milk,fat,protein,and somatic cell score in Holstein cattle[J].J Dairy Sci,2019,102(1):452-463. |
[23] | ZHU B,GUO P,WANG Z,et al.Accuracies of genomic prediction for twenty economically important traits in Chinese Simmental beef cattle[J].Anim Genet,2019,50(6):634-643. |
[24] | SONG H L,ZHANG Q,DING X D.The superiority of multi-trait models with genotype-by-environment interactions in a limited number of environments for genomic prediction in pigs[J].J Anim Sci Biotechnol,2020,11:88. |
[25] | HERRY F,DRUET D P,HÉRAULT F,et al.Interest of using imputation for genomic evaluation in layer chicken[J].Poult Sci,2020,99(5):2324-2336. |
[26] | VANRADEN P M.Efficient methods to compute genomic predictions[J].J Dairy Sci,2008,91(11):4414-4423. |
[27] | LEGARRA A,AGUILAR I,MISZTAL I.A relationship matrix including full pedigree and genomic information[J].J Dairy Sci,2009,92(9):4656-4663. |
[28] | GUO Z G,TUCKER D M,LU J W,et al.Evaluation of genome-wide selection efficiency in maize nested association mapping populations[J].Theor Appl Genet,2012,124(2):261-275. |
[29] | HABIER D,FERNANDO R L,KIZILKAYA K,et al.Extension of the bayesian alphabet for genomic selection[J].BMC Bioinformatics,2011,12:186. |
[30] | ERBE M,HAYES B J,MATUKUMALLI L K,et al.Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels[J].J Dairy Sci,2012,95(7):4114-4129. |
[31] | ZHU B,ZHU M,JIANG J C,et al.The impact of variable degrees of freedom and scale parameters in bayesian methods for genomic prediction in Chinese simmental beef cattle[J].PLoS One,2016,11(5):e0154118. |
[32] | ZHU B,NIU H,ZHANG W G,et al.Genome wide association study and genomic prediction for fatty acid composition in Chinese Simmental beef cattle using high density SNP array[J].BMC Genomics,2017,18(1):464. |
[33] | XU L,GAO N,WANG Z Z,et al.Incorporating genome annotation into genomic prediction for carcass traits in Chinese Simmental beef cattle[J].Front Genet,2020,11:481. |
[34] | AN B,XIA J,CHANG T,et al.Genome-wide association study reveals candidate genes associated with body measurement traits in Chinese Wagyu beef cattle[J].Anim Genet,2019,50(4):386-390. |
[35] | WANG Z Z,ZHU B,NIU H,et al.Genome wide association study identifies SNPs associated with fatty acid composition in Chinese Wagyu cattle[J].J Anim Sci Biotechnol,2019,10:27. |
[36] | GARRICK D J,GOLDEN B L.Producing and using genetic evaluations in the United States beef industry of today[J].J Anim Sci,2009,87(14 Suppl):E11-E18. |
[37] | BERRY D P,GARCIA J F,GARRICK D J.Development and implementation of genomic predictions in beef cattle[J].Anim Front,2016,6(1):32-38. |
[38] | SAATCHI M,MCCLURE M C,MCKAY S D,et al.Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation[J].Genet Sel Evol,2011,43(1):40. |
[39] | SAATCHI M,SCHNABEL R D,ROLF M M,et al.Accuracy of direct genomic breeding values for nationally evaluated traits in US Limousin and Simmental beef cattle[J].Genet Sel Evol,2012,44(1):38. |
[40] | JOURNAUX L,WICKHAM B,VENOT E,et al.Development of routine international genetic evaluation services for beef cattle as an extension of interbull's services[C]//Proceedings of the 2006 Interbull Meeting.2006:146-152. |
[41] | VENOT E,PABIOU T,FOUILLOUX M N,et al.Interbeef in practice:example of a joint genetic evaluation between France,Ireland and United Kingdom for pure bred Limousine weaning weights[C]//Proceedings of the Interbull Technical Workshop.2007:41-48. |
[42] | FORABOSCO F,PALUCCI V,DÜRR J.Selecting traits for international beef evaluations:survey results[C]//Proceedings of the 2009 Interbull Meeting.Barcelona,Spain,2009. |
[43] | MONTALDO H H,CASAS E,FERRAZ J B S,et al.Opportunities and challenges from the use of genomic selection for beef cattle breeding in Latin America[J].Anim Front,2012,2(1):23-29. |
[44] | NEVES H H R,CARVALHEIRO R,O'BRIEN A M P,et al.Accuracy of genomic predictions in Bos indicus (Nellore) cattle[J].Genet Sel Evol,2014,46(1):17. |
[45] | JÚNIOR G A F,ROSA G J M,VALENTE B D,et al.Genomic prediction of breeding values for carcass traits in Nellore cattle[J].Genet Sel Evol,2016,48:7. |
[46] | GRASER H U,TIER B,JOHNSTON D J,et al.Genetic Evaluation for the beef industry in Australia[J].Aust J Exp Agric,2005,45(8):913-921. |
[47] | DAETWYLER H D,CAPITAN A,PAUSCH H,et al.Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle[J].Nat Genet,2014,46(8):858-865. |
[48] | BOLORMAA S,PRYCE J E,KEMPER K,et al.Accuracy of prediction of genomic breeding values for residual feed intake and carcass and meat quality traits in Bos taurus,Bos indicus,and composite beef cattle[J].J Anim Sci,2013,91(7):3088-3104. |
[49] | BANKS R G.Progress in implementation of a beef information nucleus portfolio in the Australian beef industry[J].Proc Assoc Advmt Anim Breed Genet,2011,19:399-402. |
[50] | CHEN L,VINSKY M,LI C.Accuracy of predicting genomic breeding values for carcass merit traits in Angus and Charolais beef cattle[J].Anim Genet,2015,46(1):55-59. |
[51] | NIU H,ZHU B,GUO P,et al.Estimation of linkage disequilibrium levels and haplotype block structure in Chinese Simmental and Wagyu beef cattle using high-density genotypes[J].Livest Sci,2016,190:1-9. |
[52] | AKDEMIR D,SANCHEZ J I.Efficient breeding by genomic mating[J].Front Genet,2016,7:210. |
[1] | ZHANG Yuanxu, LI Jing, WANG Zezhao, CHEN Yan, XU Lingyang, ZHANG Lupei, GAO Xue, GAO Huijiang, LI Junya, ZHU Bo, GUO Peng. Advances in Animal Genetic Evaluation Software [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1827-1841. |
[2] | WANG Xiao, ZHANG Hao, LUAN Qingjiang, LI Hui, YANG Ding, WANG Tingyue, TIAN Jing, ZHAO Meng, CHEN Lu, TIAN Rugang. A Comprehensive Review of the Impact of Cold and Heat Stress on the Physiological Parameters and Gene Expression in Beef Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 894-904. |
[3] | YI Pengfei, SUN Lei, MA Yanan, MA Xuelian, LI Na, SUN Yawei, ZHONG Qi, YAO Gang. Comparative on Changes in Nasal Microbiota between Healthy Angus Calves and IBRV Infected Calves [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1147-1158. |
[4] | ZHONG Xin, ZHANG Hui, ZHANG Chong, LIU Xiaohong. Research Progress on Genetic Breeding of Reproductive Performance in Sows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 438-450. |
[5] | JIANG Lingling, NIU Xiaoxia, LIU Qiang, ZHANG Gang, WANG Pu, LI Yong. Analysis of Infection Status of Beef Cattle Diarrhea-related Virus in Ningxia [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3863-3871. |
[6] | WANG Wannian, CHEN Sijia, GAO Jinrong, WEN Zhonghao, YUAN Mengjiao, ZHANG Hongzhi, PANG Zhixu, QIAO Liying, LIU Wenzhong. Simulation Study on Genomic Selection of Sex-limited Traits Using Multilayer Perceptron in Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2824-2835. |
[7] | YANG Kai, LU Zhuoda, HE Jian, ZHANG Ruiqi, WANG Suqing, LI Kebiao, ZHAO Yunxiang, ZHU Xiaoping, GUO Jinbiao. The Population Effect of Commercial Pigs on the Accuracy of Genomic Selection for Carcass Traits in Duroc Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4943-4951. |
[8] | SUN Dongxiao, ZHANG Shengli, ZHANG Qin, LI Jiao, ZHANG Guixiang, LIU Chousheng, ZHENG Weijie. Application Progress on Genomic Selection Technology for Dairy Cattle in China [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4028-4039. |
[9] | MA Haoran, ZHANG Lupei, JIN Shengyun, BAO Jinshan, LI Hongyan, GAO Huijiang, XU Lingyang, WANG Zezhao, LI Junya. Assessment of the Genomic Relationships for Chinese Indigenous Beef Cattle Using High-density SNP Chip [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4174-4185. |
[10] | SHI Rui, SU Guosheng, CHEN Ziwei, LI Xiang, LUO Hanpeng, LIU Lin, GUO Gang, ZHANG Yi, WANG Yachun, ZHANG Shengli, ZHANG Qin. Comparisons of Genomic Predictions for Fertility Traits in Chinese Holstein Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2944-2954. |
[11] | PANG Zhixu, ZHANG Hongzhi, QIAO Liying, WANG Wannian, PAN Yangyang, LIU Wenzhong. Simulation Study on Joint Genomic Breeding Using Metafounders [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2172-2181. |
[12] | DING Jiqiang, LI Qinghe, ZHANG Gaomeng, LI Sen, ZHENG Maiqing, WEN Jie, ZHAO Guiping. Comparing the Accuracy of Estimated Breeding Value by Several Algorithms on Laying Traits in Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1364-1372. |
[13] | LI Hongwei, XU Lingyang, WANG Zezhao, CAI Wentao, ZHU Bo, CHEN Yan, GAO Xue, ZHANG Lupei, GAO Huijiang, LI Junya. Genome-wide Association Study of Slaughter Traits Based on Haplotype in Beef Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4232-4243. |
[14] | DU Yongwang, HUANG Chao, WANG Yidong, LI Sen, WEN Jie, CHEN Zhiwu, ZHAO Guiping, ZHENG Maiqing. Genomic Selection for RFI in Broiler Combining GWAS Prior Marker Information [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3403-3411. |
[15] | ZHANG Pengfei, HE Jun, WANG Lixian, ZHAO Fuping. Simulation Study on the Effects of Different Mating Schemes Based on Genomic and Pedigree Information [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3448-3458. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||