Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (6): 2546-2554.doi: 10.11843/j.issn.0366-6964.2025.06.003
• Review • Previous Articles Next Articles
PAN Hua1,2,3, SUN Lei4, ZHANG Jun1,2,3,*(), LIU Lili1,2,3, MA Wengang1,2,3, CAO Aizhi1,2,3, LV Mingbin1,2,3
Received:
2024-07-31
Online:
2025-06-23
Published:
2025-06-25
Contact:
ZHANG Jun
E-mail:zhangjun841013@aliyun.com
CLC Number:
PAN Hua, SUN Lei, ZHANG Jun, LIU Lili, MA Wengang, CAO Aizhi, LV Mingbin. Research Progress in Antimicrobial Mechanism and Structural Modification of Bile Acids[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2546-2554.
Table 2
The dissociation constant of different types of bile acids"
名称 Name | 不同类型胆汁酸的pKa值 pKa value of different types of bile acids | ||
游离型 Free | 牛磺酸结合型 Tauro-conjugated type | 甘氨酸结合型 Gly-conjugated type | |
胆酸Cholic acid | 4.48 | -0.88 | 3.77 |
去氧胆酸Deoxycholic acid | 4.65 | -0.75 | 3.77 |
鹅去氧胆酸Chenodeoxycholic acid | 4.60 | -0.80 | 3.77 |
熊去氧胆酸Ursodeoxycholic acid | 4.60 | -0.99 | 3.77 |
石胆酸Lithocholic acid | 4.79 | -0.63 | 3.77 |
1 | World Health Organization. 2020 Antibacterial agents in clinical and preclinical development: an overview and analysis [R]. Geneva: World Health Organization, 2021. Licence: CC BY-NC-SA 3.0 IGO. |
2 |
LIN C , WANG Y , LE M , et al. Recent progress in bile acid-based antimicrobials[J]. Bioconjug Chem, 2021, 32 (3): 395- 410.
doi: 10.1021/acs.bioconjchem.0c00642 |
3 |
LIN C , MA Z , GAO Y , et al. Main-chain cationic bile acid polymers mimicking facially amphiphilic antimicrobial peptides[J]. ACS Appl Mater Interfaces, 2023, 15 (28): 33444- 33456.
doi: 10.1021/acsami.3c06424 |
4 |
PAZZI P , PUVIANI A C , DALLA LIBERA M , et al. Bile salt-induced cytotoxicity and ursodeoxycholate cytoprotection: in-vitro study in perifused rat hepatocytes[J]. Eur J Gastroenterol Hepatol, 1997, 9 (7): 703- 709.
doi: 10.1097/00042737-199707000-00011 |
5 | 中华人民共和国农业农村部. 中华人民共和国农业农村部公告第2131号、第2358号、第257号、第614号、第809号[EB]. 中华人民共和国农业农村部公报, 2014-2024. |
Ministry of Agriculture and Rural Affairs of the People's Republic of China. Announcement No. 257, 2358, 257, 614 and 809 of the Ministry of Agriculture and Rural Affairs of the People's Republic of China [EB]. Bulletin of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, 2014-2024. (in Chinese) | |
6 |
LI Y , WANG S , HU Y , et al. Dietary bile acid supplementation reveals beneficial effects on intestinal healthy status of tongue sole (Cynoglossus semiliaevis)[J]. Fish Shellfish Immunol, 2021, 116, 52- 60.
doi: 10.1016/j.fsi.2021.06.020 |
7 |
SU C , LI J B , LU Y S , et al. Interactive effects of dietary cholesterol and bile acids on the growth, lipid metabolism, immune response and intestinal microbiota of Litopenaeus vannamei: Sparing effect of bile acids on cholesterol in shrimp diets[J]. Aquaculture, 2022, 547, 737412.
doi: 10.1016/j.aquaculture.2021.737412 |
8 |
WANG M , LI K , JIAO H , et al. Dietary bile acids supplementation decreases hepatic fat deposition with the involvement of altered gut microbiota and liver bile acids profile in broiler chickens[J]. J Anim Sci Biotechnol, 2024, 15 (1): 113.
doi: 10.1186/s40104-024-01071-y |
9 |
PIKE C M , TAM J , MELNYK R A . Tauroursodeoxycholic acid inhibits clostridioides difficile toxin-induced apoptosis[J]. Infect Immun, 2022, 90 (8): e0015322.
doi: 10.1128/iai.00153-22 |
10 |
AN C , CHON H , KU W , et al. Bile acids: major regulator of the gut microbiome[J]. Microorganisms, 2022, 10 (9): 1792.
doi: 10.3390/microorganisms10091792 |
11 |
MOHANTY I , MANNOCHIO-RUSSO H , SCHWEER J V , et al. The underappreciated diversity of bile acid modifications[J]. Cell, 2024, 187 (7): 1801-1818. e20.
doi: 10.1016/j.cell.2024.02.019 |
12 |
DI GREGORIO M C , CAUTELA J . Physiology and physical chemistry of bile acids[J]. Int J Mol Sci, 2021, 22 (4): 1780.
doi: 10.3390/ijms22041780 |
13 |
DAVIES D . Understanding biofilm resistance to antibacterial agents[J]. Nat Rev Drug Discov, 2003, 2 (2): 114- 122.
doi: 10.1038/nrd1008 |
14 |
BARMAN S , BUZOGLU KURNAZ L , YANG X , et al. Facially amphiphilic bile acid-functionalized antimicrobials: combating pathogenic bacteria, fungi, and their biofilms[J]. ACS Infect Dis, 2023, 9 (9): 1769- 1782.
doi: 10.1021/acsinfecdis.3c00266 |
15 |
GUINAN J , VILLA P , THANGAMANI S . Secondary bile acids inhibit Candida albicans growth and morphogenesis[J]. Pathog Dis, 2018, 76 (3): 10.
doi: 10.1093/femspd/fty038 |
16 |
SANCHEZ L M , CHENG A T , WARNER C J , et al. Biofilm formation and detachment in gram-negative pathogens is modulated by select bile acids[J]. PLoS One, 2016, 11 (3): e0149603.
doi: 10.1371/journal.pone.0149603 |
17 |
ELKINS C A , MULLIS L B . Bile-mediated aminoglycoside sensitivity in Lactobacillus species likely results from increased membrane permeability attributable to cholic acid[J]. Appl Environ Microbiol, 2004, 70 (12): 7200- 7209.
doi: 10.1128/AEM.70.12.7200-7209.2004 |
18 | 张军, 田子罡, 王建华, 等. 有机酸抑菌分子机理研究进展[J]. 畜牧兽医学报, 2011, 42 (3): 323- 328. |
ZHANG J , TIAN Z G , WANG J H , et al. Advance in antimicrobial molecular mechanism of organic acid[J]. Acta Veterinaria et Zootechnica Sinica, 2011, 42 (3): 323- 328. | |
19 | 张军, 王祺, 汤伟, 等. 细菌素对产生菌获得生存优势及其诱导合成条件的研究进展[J]. 微生物学通报, 2020, 47 (3): 923- 932. |
ZHANG J , WANG Q , TANG W , et al. Bacteriocinogeny, the way to acquire survival advantages through biosynthetic regulation: a review[J]. Microbiology China, 2020, 47 (3): 923- 932. | |
20 |
DONOVAN J M , JACKSON A A . Transbilayer movement of fully ionized taurine-conjugated bile salts depends upon bile salt concentration, hydrophobicity, and membrane cholesterol content[J]. Biochemistry, 1997, 36 (38): 11444- 11451.
doi: 10.1021/bi9705927 |
21 |
COLLINS S L , STINE J G , BISANZ J E , et al. Bile acids and the gut microbiota: metabolic interactions and impacts on disease[J]. Nat Rev Microbiol, 2023, 21 (4): 236- 247.
doi: 10.1038/s41579-022-00805-x |
22 |
TIAN Y , GUI W , KOO I . The microbiome modulating activity of bile acids[J]. Gut Microbes, 2020, 11 (4): 979- 996.
doi: 10.1080/19490976.2020.1732268 |
23 | URDANETA V , CASADESÚS J . Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts[J]. Front Med (Lausanne), 2017, 4, 163. |
24 | MILLER S I . Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules[J]. mBio, 2016, 7 (5): e01541- 16. |
25 |
BEGLEY M , GAHAN C G , HILL C . The interaction between bacteria and bile[J]. FEMS Microbiol Rev, 2005, 29 (4): 625- 651.
doi: 10.1016/j.femsre.2004.09.003 |
26 |
LEVERRIER P , DIMOVA D , PICHEREAU V , et al. Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis[J]. Appl Environ Microbiol, 2003, 69 (7): 3809- 3818.
doi: 10.1128/AEM.69.7.3809-3818.2003 |
27 |
BUSTOS A Y , FONT DE VALDEZ G , FADDA S , et al. New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health[J]. Food Res Int, 2018, 112, 250- 262.
doi: 10.1016/j.foodres.2018.06.035 |
28 |
KURDI P , KAWANISHI K , MIZUTANI K , et al. Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria[J]. J Bacteriol, 2006, 188 (5): 1979- 1986.
doi: 10.1128/JB.188.5.1979-1986.2006 |
29 |
WANG X J , CHEN B Y , YANG B W , et al. Short communication: chemical structure, concentration, and pH are key factors influencing antimicrobial activity of conjugated bile acids against lactobacilli[J]. J Dairy Sci, 2021, 104 (2): 1524- 1530.
doi: 10.3168/jds.2020-19293 |
30 |
WATANABE M , FUKIYA S , YOKOTA A . Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humans and rodents[J]. J Lipid Res, 2017, 58 (6): 1143- 1152.
doi: 10.1194/jlr.M075143 |
31 |
PALACE S G , FRYLING K E , LI Y , et al. Identification of bile acid and fatty acid species as candidate rapidly bactericidal agents for topical treatment of gonorrhoea[J]. J Antimicrob Chemother, 2021, 76 (10): 2569- 2577.
doi: 10.1093/jac/dkab217 |
32 | CREMERS C M , KNOEFLER D , VITVITSKY V , et al. Bile salts act as effective protein-unfolding agents and instigators of disulfide stress in vivo[J]. Proc Natl Acad Sci USA, 2014, 111 (16): E1610- 9. |
33 |
KANDELL R L , BERNSTEIN C . Bile salt/acid induction of DNA damage in bacterial and mammalian cells: implications for colon cancer[J]. Nutr Cancer, 1991, 16 (3-4): 227- 238.
doi: 10.1080/01635589109514161 |
34 |
PRIETO A I , RAMOS-MORALES F , CASADESÚS J . Bile-induced DNA damage in Salmonella enterica[J]. Genetics, 2004, 168 (4): 1787- 1794.
doi: 10.1534/genetics.104.031062 |
35 | TREMBLAY S , ROMAIN G , ROUX M , et al. Bile acid administration elicits an intestinal antimicrobial program and reduces the bacterial burden in two mouse models of enteric infection[J]. Infect Immun, 2017, 85 (6): e00942- 16. |
36 |
LAJCZAK N K , SAINT-CRIQ V , O'DWYER A M , et al. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and-2 secretion by colonic epithelial cells[J]. FASEB J, 2017, 31 (9): 3848- 3857.
doi: 10.1096/fj.201601365R |
37 |
WANG Y , YU Y , LI L , et al. Bile acid-dependent transcription factors and chromatin accessibility determine regional heterogeneity of intestinal antimicrobial peptides[J]. Nat Commun, 2023, 14 (1): 5093.
doi: 10.1038/s41467-023-40565-7 |
38 |
INAGAKI T , MOSCHETTA A , LEE Y K , et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor[J]. Proc Natl Acad Sci USA, 2006, 103 (10): 3920- 3925.
doi: 10.1073/pnas.0509592103 |
39 |
RASHID S A , NORMAN N , TEO S H , et al. Cholic acid: a novel steroidal uncompetitive inhibitor against β-lactamase produced by multidrug-resistant isolates[J]. World J Microbiol Biotechnol, 2021, 37 (9): 152.
doi: 10.1007/s11274-021-03118-y |
40 |
YANG X , STEIN K R , HANG H C . Anti-infective bile acids bind and inactivate a Salmonella virulence regulator[J]. Nat Chem Biol, 2023, 19 (1): 91- 100.
doi: 10.1038/s41589-022-01122-3 |
41 |
ZHANG L , FAN Y . Noncovalent bile acid oligomers as facial amphiphilic antimicrobials[J]. Langmuir, 2023, 39 (1): 495- 506.
doi: 10.1021/acs.langmuir.2c02787 |
42 |
SINGLA P , DALAL P , KAUR M , et al. Bile acid oligomers and their combination with antibiotics to combat bacterial infections[J]. J Med Chem, 2018, 61 (22): 10265- 10275.
doi: 10.1021/acs.jmedchem.8b01433 |
43 |
ZHOU L , LI Y , LI S , et al. Cholic acid-derived facial surfactants with long side-chain quaternary ammonium: synthesis and antimicrobial activity study[J]. J Surfactants Deterg, 2016, 19 (4): 803- 811.
doi: 10.1007/s11743-016-1837-4 |
44 |
NIE Q , LUO X , WANG K , et al. Gut symbionts alleviate MASH through a secondary bile acid biosynthetic pathway[J]. Cell, 2024, 187 (11): 2717-2734. e33.
doi: 10.1016/j.cell.2024.03.034 |
45 |
GUZIOR D V , OKROS M , SHIVEL M , et al. Bile salt hydrolase acyltransferase activity expands bile acid diversity[J]. Nature, 2024, 626 (8000): 852- 858.
doi: 10.1038/s41586-024-07017-8 |
46 |
SATO Y , ATARASHI K . Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians[J]. Nature, 2021, 599 (7885): 458- 464.
doi: 10.1038/s41586-021-03832-5 |
47 |
RIDLON J M , GASKINS H R . Another renaissance for bile acid gastrointestinal microbiology[J]. Nat Rev Gastroenterol Hepatol, 2024, 21 (5): 348- 364.
doi: 10.1038/s41575-024-00896-2 |
48 | GANEWATTA M S , RAHMAN M A , MERCADO L , et al. Facially amphiphilic polyionene biocidal polymers derived from lithocholic acid[J]. Bioact Mater, 2018, 3 (2): 186- 193. |
[1] | LIU Zilong, LI Qiao, WU Yi, WANG Huihui, LI Taotao, MA Youji. Transcriptomics Reveals the Effects of Chinese Herbal Feed Additives on Bile Acids Metabolism and Immune Function in Hu Sheep Liver Tissue [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 3014-3026. |
[2] | HAN Fuzhen, CAI Limeng, LI Zhuoran, WANG Xueying, XIE Weichun, KUANG Hongdi, LI Jiaxuan, CUI Wen, JIANG Yanping, LI Yijing, SHAN Zhifu, TANG Lijie. Research Progress on the Mechanism of Intestinal Flora-Mediated Regulation of Intestinal Mucosal Immunity by Secondary Bile Acids and Their Receptors [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1904-1913. |
[3] | TIAN Yanhong, YU Jiangxu, JIAO Yuzhou, GAO Dongyang, CAI Xuwang. Research Progress on Structural Modification and Its Effects of Salmonella Lipopolysaccharides [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1392-1402. |
[4] | SONG Jun, ZHOU Zhixin, FU Linqing, WANG Hansheng, LIU Meng, SUN Dongbo, ZHENG Jiasan. Antimicrobial Activity and Mechanism of Rhein against Staphylococcus pseudintermedius [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(8): 2275-2283. |
[5] | DU Xue'er, WANG Jing, YAO Junhu, CAO Yangchun. Bile Acid Enterohepatic Circulation Transporter and Its Regulatory Mechanism by FXR [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(10): 2721-2739. |
[6] | ZHANG Jun;TIAN Zi-gang;;WANG Jian-hua;WANG An-ru . Advances in Antimicrobial Molecular Mechanism of Organic Acids [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2011, 42(3): 323-328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||