

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (10): 5302-5314.doi: 10.11843/j.issn.0366-6964.2025.10.048
• Clinical Veterinary Medicine • Previous Articles Next Articles
WANG Ruijia1(
), GUO Shijiao2, LIU Zezheng1, SHI Jingwen1, ZHAO Yiran1, ZHANG Hua1,*(
), WANG Jianfang3,*(
)
Received:2024-10-11
Online:2025-10-23
Published:2025-11-01
Contact:
ZHANG Hua, WANG Jianfang
E-mail:15031889192@163.com;huazhang0914@163.com;wjfhlx@126.com
CLC Number:
WANG Ruijia, GUO Shijiao, LIU Zezheng, SHI Jingwen, ZHAO Yiran, ZHANG Hua, WANG Jianfang. Resolution of Serum Metabolomic Changes during the Perioperative Phase of Hepatectomy in Beagle Dogs Using Ultra-high Performance Liquid Chromatography-mass Spectrometry[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 5302-5314.
Fig. 1
Location of the cannula for laparoscopic hepatic lobectomy (A) and metabolomics analysis (B-L) A. Location of the cannula for laparoscopic hepatic lobectomy[21]; B. The TIC plot in the positive-ion mode; C. The TIC plot in the negative-ion mode; D-F. PCA scoring diagram of Mod 7 vs Mod 0、Mod 14 vs Mod 0、Mod 14 vs Mod 7; G-I. OPLS-DA score plot and permutation test diagram of Mod 7 vs Mod 0、Mod 14 vs Mod 0、Mod 14 vs Mod 7; J-L. Volcanic map of serum metabolite of Mod 7 vs Mod 0、Mod 14 vs Mod 0、Mod 14 vs Mod 7"
Table 1
Differential metabolites of Mod 7 and Mod 0"
| 序号 Number | 代谢物 Metabolite | 质荷比 m/z | 保留时间/min Rt | 变量投影重要度 VIP | P值 P-value | 差异倍数 FC | 趋势 Trend |
| 1 | Morpholine | 88.08 | 206.43 | 2.28 | 0.009 | 0.21 | ↓ |
| 2 | 4-Amino-2-methyl-1-naphthol | 174.09 | 25.44 | 1.86 | 0.010 | 0.58 | ↓ |
| 3 | LysoPE(0:0/18:0) | 482.32 | 222.27 | 1.83 | 0.006 | 0.66 | ↓ |
| 4 | PS(20:5(5Z,8Z,11Z,14Z,17Z)/18:3(6Z,9Z,12Z)) | 804.49 | 240.65 | 2.38 | 0.004 | 0.45 | ↓ |
| 5 | Citronellyl beta-sophoroside | 481.26 | 85.24 | 2.10 | 0.004 | 3.01 | ↑ |
| 6 | L-Phenylalanine | 166.09 | 278.43 | 2.19 | 0.006 | 1.28 | ↑ |
| 7 | 3-Methylhistidine | 170.09 | 395.83 | 2.01 | 0.006 | 1.67 | ↑ |
| 8 | PC(16:0/16:0) | 734.57 | 168.80 | 2.01 | 0.003 | 1.24 | ↑ |
| 9 | 3a,7a-Dihydroxy-5b-cholestane | 405.37 | 23.66 | 2.38 | < 0.001 | 2.77 | ↑ |
| 10 | PC(18:1(9Z)/P-18:1(11Z)) | 770.60 | 160.83 | 1.87 | 0.009 | 1.25 | ↑ |
| 11 | PC(18:2(9Z,12Z)/P-18:1(11Z)) | 768.59 | 159.90 | 2.21 | < 0.001 | 1.34 | ↑ |
| 12 | PC(22:4(7Z,10Z,13Z,16Z)/P-18:0) | 822.63 | 156.30 | 1.90 | 0.006 | 1.27 | ↑ |
| 13 | Isopentyl mercaptan | 105.07 | 318.89 | 1.92 | 0.009 | 2.09 | ↑ |
| 14 | PE(P-18:1(11Z)/18:3(6Z,9Z,12Z)) | 724.53 | 158.11 | 1.81 | 0.004 | 1.48 | ↑ |
| 15 | Kanzonol I | 437.23 | 79.44 | 2.15 | 0.041 | 2.31 | ↑ |
| 16 | 8-Butanoylneosolaniol | 453.21 | 79.36 | 2.16 | 0.038 | 2.36 | ↑ |
| 17 | Tetrahydroaldosterone-3-glucuronide | 541.26 | 93.86 | 2.18 | 0.037 | 2.46 | ↑ |
| 18 | 3-Methylcytosine | 126.07 | 214.23 | 1.76 | 0.019 | 2.02 | ↑ |
| 19 | N-Hexadecanoylpyrrolidine | 310.31 | 222.28 | 1.30 | 0.033 | 0.62 | ↓ |
| 20 | Proline betaine | 144.10 | 291.25 | 1.53 | 0.044 | 0.61 | ↓ |
| 21 | beta-Elemenone | 219.17 | 33.32 | 2.17 | 0.019 | 0.04 | ↓ |
| 22 | 3-Aminobutanoic acid | 104.07 | 318.91 | 1.81 | 0.017 | 1.63 | ↑ |
| 23 | beta-Sinensal | 219.17 | 191.40 | 1.73 | 0.017 | 0.41 | ↓ |
| 24 | Pyro-L-glutaminyl-L-glutamine | 258.11 | 186.23 | 1.89 | 0.022 | 1.51 | ↑ |
| 25 | Heptadecanoyl carnitine | 414.36 | 197.84 | 1.88 | 0.023 | 0.56 | ↓ |
| 26 | Erythrabyssin Ⅱ | 393.21 | 74.16 | 2.15 | 0.042 | 2.31 | ↑ |
| 27 | Threoninyl-Proline | 217.12 | 411.72 | 1.89 | 0.013 | 1.60 | ↑ |
| 28 | 2-Oxoarginine | 174.09 | 346.99 | 1.46 | 0.045 | 0.64 | ↓ |
| 29 | N-Nitroso-pyrrolidine | 101.07 | 304.11 | 1.56 | 0.033 | 0.86 | ↓ |
| 30 | Isosalsolidine | 204.10 | 24.52 | 1.86 | 0.021 | 0.49 | ↓ |
| 31 | 1-Deoxy-D-glucitol | 167.09 | 126.89 | 1.47 | 0.042 | 1.79 | ↑ |
| 32 | PC(18:1(9Z)/P-16:0) | 744.59 | 38.72 | 1.43 | 0.032 | 1.24 | ↑ |
| 33 | PC(15:0/15:0) | 706.54 | 170.56 | 1.78 | 0.022 | 1.35 | ↑ |
| 34 | PC(18:0/P-16:0) | 746.60 | 38.71 | 1.49 | 0.025 | 1.38 | ↑ |
| 35 | beta-Solamarine | 868.51 | 150.90 | 2.01 | 0.010 | 0.44 | ↓ |
Table 2
Differential metabolites of Mod 14 and Mod 0"
| 序号 Number | 代谢物 Metabolite | 质荷比 m/z | 保留时间/min Rt | 变量投影重要度 VIP | P值 P-value | 差异倍数 FC | 趋势 Trend |
| 1 | 4-Amino-2-methyl-1-naphthol | 174.09 | 25.44 | 2.28 | 0.002 | 0.44 | ↓ |
| 2 | beta-Sinensal | 219.17 | 191.40 | 2.45 | 0.005 | 0.26 | ↓ |
| 3 | 2,3,4,5,6,7-Hexahydro-7-methylcyclopent[b]azepin-8(1H)-one | 166.12 | 33.41 | 2.47 | < 0.001 | 0.25 | ↓ |
| 4 | L-Octanoylcarnitine | 288.22 | 228.77 | 2.10 | 0.004 | 0.64 | ↓ |
| 5 | LysoPE(0:0/18:0) | 482.32 | 222.27 | 1.80 | 0.01 | 0.65 | ↓ |
| 6 | beta-Solamarine | 868.51 | 150.90 | 1.38 | 0.006 | 0.37 | ↓ |
| 7 | PS(20:5(5Z,8Z,11Z,14Z,17Z)/18:3(6Z,9Z,12Z)) | 804.49 | 240.65 | 1.41 | 0.001 | 0.35 | ↓ |
| 8 | 1-Methylnicotinamide | 137.07 | 310.52 | 2.41 | 0.001 | 2.47 | ↑ |
| 9 | 1H-Indole-3-carboxaldehyde | 146.06 | 48.34 | 2.52 | < 0.001 | 1.44 | ↑ |
| 10 | Isovalerylglucuronide | 279.11 | 325.39 | 2.44 | 0.002 | 1.29 | ↑ |
| 11 | PC(18:2(9Z,12Z)/P-18:1(11Z)) | 768.59 | 159.90 | 2.08 | 0.003 | 1.27 | ↑ |
| 12 | PC(22:4(7Z,10Z,13Z,16Z)/P-18:0) | 822.63 | 156.30 | 2.11 | 0.001 | 1.26 | ↑ |
| 13 | SM(d18:1/20:0) | 759.63 | 202.42 | 2.09 | 0.004 | 1.33 | ↑ |
| 14 | Niacinamide | 123.06 | 59.76 | 1.73 | 0.049 | 2.24 | ↑ |
| 15 | Morpholine | 88.08 | 206.43 | 1.76 | 0.025 | 0.37 | ↓ |
| 16 | 1,2,3,4-Tetrahydro-2-methyl-b-carboline | 187.12 | 37.84 | 1.65 | 0.044 | 0.50 | ↓ |
| 17 | Riboflavin | 377.15 | 235.12 | 2.06 | 0.019 | 1.48 | ↑ |
| 18 | N-Hexadecanoylpyrrolidine | 310.31 | 222.28 | 1.13 | 0.034 | 0.61 | ↓ |
| 19 | 5′-Methylthioadenosine | 298.10 | 90.37 | 1.57 | 0.047 | 1.59 | ↑ |
| 20 | beta-Elemenone | 219.17 | 33.32 | 1.86 | 0.028 | 0.13 | ↓ |
| 21 | 3-Aminobutanoic acid | 104.07 | 318.91 | 1.72 | 0.040 | 1.58 | ↑ |
| 22 | LysoPE(16:0/0:0) | 454.29 | 225.98 | 1.31 | 0.044 | 0.64 | ↓ |
| 23 | L-Arginine | 175.12 | 524.12 | 2.02 | 0.020 | 1.20 | ↑ |
| 24 | 1,7-Dimethylguanosine | 312.13 | 209.71 | 2.04 | 0.012 | 1.46 | ↑ |
| 25 | PC(16:0/16:0) | 734.57 | 168.80 | 1.92 | 0.012 | 1.18 | ↑ |
| 26 | apo-[3-methylcrotonoyl-CoA:carbon-dioxide ligase(ADP-forming)] | 174.12 | 333.85 | 2.30 | 0.037 | 0.29 | ↓ |
| 27 | Heptadecanoyl carnitine | 414.36 | 197.84 | 1.60 | 0.031 | 0.69 | ↓ |
| 28 | Lactosylceramide (d18:1/16:0) | 862.62 | 210.26 | 1.60 | 0.031 | 1.73 | ↑ |
| 29 | PC(18:1(9Z)/P-18:1(11Z)) | 770.60 | 160.83 | 1.73 | 0.023 | 1.17 | ↑ |
| 30 | Threoninyl-Proline | 217.12 | 411.72 | 2.25 | 0.036 | 1.89 | ↑ |
| 31 | SM(d18:1/24:1(15Z)) | 813.68 | 213.63 | 1.51 | 0.041 | 1.35 | ↑ |
| 32 | 2-Oxoarginine | 174.09 | 346.99 | 2.03 | 0.021 | 0.57 | ↓ |
| 33 | 5-Hydroxy-L-tryptophan | 221.09 | 50.83 | 2.05 | 0.011 | 1.66 | ↑ |
| 34 | Glycerol tributanoate | 303.18 | 123.10 | 1.10 | 0.045 | 3.52 | ↑ |
| 35 | Isosalsolidine | 204.10 | 24.52 | 1.47 | 0.030 | 0.52 | ↓ |
| 36 | Na, Na-Dimethylhistamine | 140.12 | 225.01 | 1.58 | 0.036 | 1.27 | ↑ |
| 37 | SM(d18:1/22:0) | 787.67 | 200.92 | 1.75 | 0.020 | 1.38 | ↑ |
| 38 | PC(18:2(9Z,12Z)/18:0) | 786.60 | 38.71 | 1.49 | 0.040 | 0.80 | ↓ |
| 39 | Isoleucyl-Histidine | 269.16 | 301.39 | 1.80 | 0.019 | 1.60 | ↑ |
| 40 | PC(20:3(8Z,11Z,14Z)/14:0) | 756.55 | 60.08 | 1.88 | 0.042 | 0.63 | ↓ |
| 41 | PC(18:3(6Z,9Z,12Z)/18:0) | 784.58 | 58.81 | 1.53 | 0.036 | 0.71 | ↓ |
| 42 | Isopentyl mercaptan | 105.07 | 318.89 | 1.77 | 0.041 | 1.88 | ↑ |
Table 3
differential metabolites of Mod 14 and Mod 7"
| 序号 Number | 代谢物 Metabolite | 质荷比 m/z | 保留时间/min Rt | 变量投影重要度 VIP | P值 P-value | 差异倍数 FC | 趋势 Trend |
| 1 | Thiomorpholine 3-carboxylate | 148.04 | 386.38 | 2.35 | 0.006 | 0.68 | ↓ |
| 2 | Cytarabine | 244.09 | 258.20 | 2.39 | 0.010 | 1.53 | ↑ |
| 3 | SM(d17:1/24:1(15Z)) | 799.67 | 213.31 | 2.69 | 0.009 | 1.57 | ↑ |
| 4 | Kanzonol I | 437.23 | 79.44 | 1.66 | 0.042 | 0.58 | ↓ |
| 5 | Citronellyl beta-sophoroside | 481.26 | 85.24 | 1.69 | 0.040 | 0.55 | ↓ |
| 6 | Niacinamide | 123.06 | 59.76 | 2.20 | 0.035 | 2.49 | ↑ |
| 7 | Proline betaine | 144.10 | 291.25 | 2.33 | 0.036 | 2.22 | ↑ |
| 8 | Phytosphingosine | 318.30 | 40.46 | 2.21 | 0.021 | 0.00 | ↓ |
| 9 | 2,3,4,5,6,7-Hexahydro-7-methylcyclopent[b]azepin-8(1H)-one | 166.12 | 33.41 | 1.77 | 0.026 | 0.42 | ↓ |
| 10 | Ethylbenzene | 107.09 | 33.43 | 1.54 | 0.031 | 0.64 | ↓ |
| 11 | alpha-Methylstyrene | 119.09 | 33.37 | 2.17 | 0.030 | 0.15 | ↓ |
| 12 | Lycoperoside D | 740.46 | 140.02 | 1.27 | 0.047 | 0.70 | ↓ |
| 13 | 3-[(Cyanophenylmethyl)amino]-3-oxopropanoic acid | 219.08 | 213.35 | 2.26 | 0.014 | 1.36 | ↑ |
| 14 | PC(18:2(9Z,12Z)/18:0) | 786.60 | 38.71 | 2.41 | 0.011 | 0.76 | ↓ |
| 15 | Imidazole-4-acetaldehyde | 111.07 | 239.32 | 1.33 | 0.036 | 1.67 | ↑ |
| 16 | L-Isoleucine | 132.10 | 4.91 | 2.04 | 0.028 | 2.49 | ↑ |
Fig. 2
Cluster heatmap of differential metabolites andBubble diagram of metabolic pathway enrichment analysis A. Cluster heatmap of differential metabolites of Mod 7 vs. Mod 0; B. Cluster heatmap of differential metabolites of Mod 14 vs. Mod 0; C. Cluster heatmap of differential metabolites of Mod 14 vs. Mod 7; D. Bubble diagram of metabolic pathway enrichment analysis of Mod 7 vs. Mod 0; E. Bubble diagram of metabolic pathway enrichment analysis of Mod 14 vs. Mod 0; F. Bubble diagram of metabolic pathway enrichment analysis of Mod 14 vs. Mod 7"
| 1 | CHEBIB F T , HARMON A , IRAZABAL MIRA M V , et al. Outcomes and durability of hepatic reduction after combined partial hepatectomy and cyst fenestration for massive polycystic liver disease[J]. J Am Coll Surg, 2016, 223 (1): 118- 126. |
| 2 | GUGLIELMO N , MELANDRO F , IMPROTA L , et al. Early right hepatectomy for severe liver trauma: A case report[J]. Clin Ter, 2015, 166 (2): e108- e110. |
| 3 | JABŁOŃKA B . Hepatectomy for bile duct injuries: When is it necessary?[J]. World J Gastroenterol, 2013, 19 (38): 6348- 6352. |
| 4 | 蔡秀军, 张斌, 陈鸣宇, 等. 我国腹腔镜肝切除术近10年进展与发展趋势[J]. 中国实用外科杂志, 2022, 42 (9): 961- 964. |
| CAI X J , ZHANG B , CHEN M Y , et al. Laparoscopic hepatectomy: progress in the last decade and evolving trends[J]. Chinese Journal of Practical Surgery, 2022, 42 (9): 961- 964. | |
| 5 | DEBBAUT C , DE WILDE D , CASTELEYN C , et al. Modeling the impact of partial hepatectomy on the hepatic hemodynamics using a rat model[J]. IEEE Trans Biomed Eng, 2012, 59 (12): 3293- 3303. |
| 6 | SHIMADA M , KAWAGUCHI M , ISHIKAWA N , et al. Saline-filled laparoscopic surgery: A basic study on partial hepatectomy in a rabbit model[J]. Minim Invasive Ther Allied Technol, 2015, 24 (4): 218- 225. |
| 7 | HAMMOND J S , GODTLIEBSEN F , STEIGEN S , et al. The effects of terlipressin and direct portacaval shunting on liver hemodynamics following 80% hepatectomy in the pig[J]. Clin Sci, 2019, 133 (1): 153- 166. |
| 8 | ZHANG J H , ZHANG P F , CAO J L . Safety and efficacy of precision hepatectomy in the treatment of primary liver cancer[J]. BMC Surg, 2023, 23 (1): 241. |
| 9 | STEEN S , CONWAY C , GUERRA C , et al. 90% hepatectomy with a porto-hepatic shunt in a canine model: A feasibility study[J]. ILAR J, 2012, 53 (1): E1- E8. |
| 10 | SAHAY P , JAIN K , SINHA P , et al. Generation of a rat model of acute liver failure by combining 70% partial hepatectomy and acetaminophen[J]. J Vis Exp, 2019 (153): 10. |
| 11 | SÁNCHEZ-HIDALGO J M , NARANJO A , CIRIA R , et al. Impact of age on liver regeneration response to injury after partial hepatectomy in a rat model[J]. J Surg Res, 2012, 175 (1): e1- e9. |
| 12 | ZHANG H , LIU T , WANG Y , et al. Laparoscopic left hepatectomy in swine: A safe and feasible technique[J]. J Vet Sci, 2014, 15 (3): 417- 422. |
| 13 | KWON Y S , JANG K H , JANG I H . The effects of Korean red ginseng (ginseng radix rubra) on liver regeneration after partial hepatectomy in dogs[J]. J Vet Sci, 2003, 4 (1): 83- 92. |
| 14 | 张肇南. 比格犬腹腔镜左肝叶切除模型的建立及术后肠道菌群变化的研究[D]. 北京: 北京农学院, 2020. |
| ZHANG Z N. Establishment of laparoscopic model of left hepatic lobe resection in beagle dogs and study of intestinal flora[D]. Beijing: Beijing University of Agriculture, 2020. (in Chinese) | |
| 15 | 马丽娜, 李蕾蕾, 康晓冬, 等. 饲粮蛋白质水平对哺乳期犊牛生长性能、血清生化、免疫和抗氧化指标以及血清代谢物的影响[J]. 动物营养学报, 2024, 36 (9): 5776- 5792. |
| MA L N , LI L L , KANG X D , et al. Effect of dietary protein level on growth performance, serum biochemical, immune and Antioxidant Indices and serum metabolites of lactating calves[J]. Chinese Journal of Animal Nutrition, 2024, 36 (9): 5776- 5792. | |
| 16 | SUN H Z , WANG D M , WANG B , et al. Metabolomics of four biofluids from dairy cows: potential biomarkers for milk production and quality[J]. J Proteome Res, 2015, 14 (2): 1287- 1298. |
| 17 | ZHU C , ZHANG Q , ZHAO X , et al. Metabolomic analysis of multiple biological specimens (feces, serum, and urine) by 1H-NMR spectroscopy from dairy cows with clinical mastitis[J]. Animals(Basel), 2023, 13 (4): 741. |
| 18 | JOHNZON C F , DAHLBERG J , GUSTAFSON A M , et al. The effect of lipopolysaccharide-induced experimental bovine mastitis on clinical parameters, inflammatory markers, and the metabolome: A kinetic approach[J]. Front Immunol, 2018, 9, 1487. |
| 19 | 郭延生, 贾启鹏, 陶金忠. 基于GC-MS策略的奶牛热应激血液代谢组学研究[J]. 畜牧兽医学报, 2015, 46 (8): 1356- 1362. |
| GUO Y S , JIA Q P , TAO J Z . Blood metabolomics of dairy cows under heat stress based on GC-MS strategy[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46 (8): 1356- 1362. | |
| 20 | 刘杰, 郭荣, 张娟, 等. 能量与蛋白质水平对静原鸡生长性能、屠宰性能、血液生化指标及代谢组的影响[J]. 西南农业学报, 2024, 37 (3): 664- 677. |
| LIU J , GUO R , ZHANG J , et al. Effect of energy and protein levels on growth performance, slaughter performance, blood biochemical indexes and metabolome of the chickens[J]. Southwest China Journal of Agricultural Sciences, 2024, 37 (3): 664- 677. | |
| 21 | ZHANG H , WANG J , CAO Y , et al. Laparoscopic left hemihepatectomy in small dogs: An easy and effective new technique[J]. Acta Vet Brno, 2021, 89 (4): 367- 373. |
| 22 | 孙亚新. 基于代谢组学技术的二甲双脈对双酚A诱导大鼠肝损伤的保护作用机制研究[D]. 郑州: 郑州大学, 2020. |
| SUN Y X. Study on the protective mechanism of double vein on rats based on metabolomics technology[D]. Zhengzhou: Zhengzhou University, 2020. (in Chinese) | |
| 23 | 王清平. 苯丙氨酸代谢失调与疾病[J]. 国外医学(生理、病理科学与临床分册), 2001, 21 (6): 451- 453. |
| WANG Q P . Dysregulation of phenylalanine metabolism and disease[J]. Foreign medicine (Physiology, Pathology Science and Clinical Division), 2001, 21 (6): 451- 453. | |
| 24 | VAN GINKEL W G , GOUW A S , VAN DER JAGT E J , et al. Hepatocellular carcinoma in tyrosinemia type 1 without clear increase of AFP[J]. Pediatrics, 2015, 135 (3): e749- e752. |
| 25 | 孙玉然. 基于多组学技术的茵陈蒿汤体内主要成分6,7-二甲氧基香豆素干预酒精性肝损伤的机制[D]. 哈尔滨: 黑龙江中医药大学, 2024. |
| SUN Y R. The mechanism of 6,7-dimethoxycoumarin, a main component in the soup, based on multi-omics technology[D]. Harbin: Heilongjiang University of Traditional Chinese Medicine, 2024. (in Chinese) | |
| 26 | LU Y , SHAO M , XIANG H , et al. Integrative transcriptomics and metabolomics explore the mechanism of kaempferol on improving nonalcoholic steatohepatitis[J]. Food Funct, 2020, 11 (11): 10058- 10069. |
| 27 | 李木子, 张豫川, 阿依木古丽·阿不都热依木, 等. 色氨酸及其代谢物对细胞增殖的影响[J]. 中国细胞生物学学报, 2023, 45 (07): 1104- 1115. |
| LI M Z , ZHANG Y C , AYIMUGULI A , et al. Effects of tryptophan and its metabolites on cell proliferation[J]. Chinese Journal of Cell Biology, 2023, 45 (07): 1104- 1115. | |
| 28 | DU L , LI S , QI L , et al. Metabonomic analysis of the joint toxic action of long-term low-level exposure to a mixture of four organophosphate pesticides in rat plasma[J]. Mol Biosyst, 2014, 10 (5): 1153- 1161. |
| 29 | AN Z , LI C , LV Y , et al. Metabolomics of hydrazine-Induced hepatotoxicity in rats for discovering potential biomarkers[J]. Dis Markers, 2018, 2018 (1): 8473161. |
| 30 | CIAULA A D , GARRUTI G , BACCETTO R L , et al. Bile acid physiology[J]. Annals of hepatology, 2018, 16 (1): 4- 14. |
| 31 | JIAO N , BAKER S S , CHAPA-RODRIGUEZ A , et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD[J]. Gut, 2018, 67 (10): 1881- 1891. |
| 32 | 王朋, 林森, 吴德, 等. 胆汁酸的营养生理作用及代谢调控研究进展[J]. 动物营养学报, 2019, 31 (5): 2002- 2011. |
| WANG P , LIN S , WU D , et al. Recent progress in nutrition physiology role and metabolism regulation of bile acids[J]. Chinese Journal of Animal Nutrition, 2019, 31 (5): 2002- 2011. | |
| 33 | WANG Y F , GUNEWARDENA S , LI F , et al. An FGF15/19-TFEB regulatory loop controls hepatic cholesterol and bile acid homeostasis[J]. Nat Commun, 2020, 11 (1): 3612. |
| 34 | LI T , CHIANG J Y . Bile acid signaling in metabolic disease and drug therapy[J]. Pharmacol Rev, 2014, 66 (4): 948- 983. |
| 35 | WU Y , AQUINO C J , COWAN D J , et al. Discovery of a highly potent, nonabsorbable apical sodium-dependent bile acid transporter inhibitor (GSK2330672) for treatment of type 2 diabetes[J]. J Med Chem, 2013, 56 (12): 5094- 5114. |
| 36 | WANG Y , DING Y , LI J , et al. Targeting the enterohepatic bile acid signaling induces hepatic autophagy via a CYP7A1-AKT-mTOR axis in mice[J]. Cell Mol Gastroenterol Hepatol, 2016, 3 (2): 245- 260. |
| 37 | IBRAHIM S , DAYOUB R , SABERI V , et al. Augmenter of Liver Regeneration (ALR) regulates bile acid synthesis and attenuates bile acid-induced apoptosis via glycogen synthase kinase-3β (GSK-3β) inhibition[J]. Exp Cell Res, 2020, 397 (1): 112343. |
| 38 | RAO A , KOSTERS A , MELLS J E , et al. Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice[J]. Sci Transl Med, 2016, 8 (357): 357ra122. |
| 39 | MA C , HAN M , HEINRICH B , et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells[J]. Science, 2018, 360 (6391): eaan5931. |
| 40 | 蒲春香, 李金龙, 龚大春, 等. 维生素生物合成途径中酶的代谢与功能的探索[J]. 生物工程学报, 2024, 40 (8): 2570- 2603. |
| PU C X , LI J L , GONG D C , et al. Enzyme metabolism and functions in vitamin biosynthesis pathways[J]. Chinese Journal of Biotechnology, 2024, 40 (8): 2570- 2603. | |
| 41 | STROMSDORFER K L , YAMAGUCHI S , YOON M J , et al. NAMPT-Mediated NAD+ biosynthesis in adipocytes regulates adipose tissue function and multi-organInsulin sensitivity in mice[J]. Cell Rep, 2016, 16 (7): 1851- 1860. |
| 42 | CATON P W , KIESWICH J , YAQOOB M M , et al. Nicotinamide mononucleotide protectsagainst pro-inflammatory cytokine-mediated impairment of mouse isletfunction[J]. Diabetologia, 2011, 54 (12): 3083- 3092. |
| 43 | FAN Y , XUE M , SHAN T , et al. Niacin alleviates extracellular matrix deposition in ethanol+CCl4-induced liver fibrosis through the HSP90/JAK1/STAT3 axis[J]. Food Biosci, 2024, 57, 103454. |
| 44 | ZEMAN M , VECKA M , PERLÍK F , et al. Pleiotropic effects of niacin: current possibilities for its clinical use[J]. Acta Pharm, 2016, 66 (4): 449- 469. |
| 45 | WAN H F , LI J X , LIAO H T , et al. Nicotinamide induces liver regeneration and improves liver function by activating SIRT1[J]. Mol Med Rep, 2019, 19 (1): 555- 562. |
| 46 | TUMMALA K S , GOMES A L , YILMAZ M , et al. Inhibition of de novo NAD+ synthesis by oncogenic URI causes liver tumorigenesis through DNA damage[J]. Cancer cell, 2014, 26 (6): 826- 839. |
| 47 | MA Y , BAO Y , WANG S , et al. Anti-inflammation effects and potential mechanism of saikosaponins by regulating nicotinate and nicotinamide metabolism and arachidonic acid metabolism[J]. Inflammation, 2016, 39 (4): 1453- 1461. |
| 48 | 孙湛博. 原发性肝癌患者肝动脉化疗栓塞术前术后肠道菌群分析及烟酰胺单核苷酸(NMN)在肝癌中的作用及机制研究[D]. 沈阳: 中国医科大学, 2022. |
| SUN Z B. Analysis of the intestinal microbiota before and after hepatic artery chemoembolization in primary liver cancer patients and study on the role and mechanism of nicotinamide mononucleotide (NMN) in liver cancer[D]. Shenyang: China Medical University, 2022. (in Chinese) |
| [1] | LI Wufeng, GUAN Jiawei, QIU Lixia, SUN Yutong, DU Min. Study on the Molecular Mechanism of Regulating Tenderness of Longissimus Dorsi Muscle of Donkey Based on Transcriptomics and Metabolomics [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 743-754. |
| [2] | JIAO Zhihui, ZHANG Qianzhen, WANG Yue, LIU Tao, LIU Boyang, MA Yajun, LIU Xiaoning, PIAO Chenxi, WANG Hongbin. Effect of Adipose-derived Stem Cells-conditioned Medium on Oxidative Stress in Miniature Pigs with Laparoscopic Hepatic Injury [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(6): 1734-1743. |
| [3] | LI Wufeng, SUN Yutong, GUAN Jiawei, ZHAO Jingwei, DU Min. Key Regulatory Factors of Intramuscular Fat Deposition in Donkey [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2): 364-375. |
| [4] | JIAO Zhihui, MA Yajun, LIU Xiaoning, ZHANG Qianzhen, WANG Yue, LIU Tao, PIAO Chenxi, LIU Boyang, WANG Hongbin. Study of Adipose-derived Stem Cell Condition Medium on the Inflammatory Response of Miniature Pigs with Laparoscopic Liver Ischemia Reperfusion Combined with Partial Hepatectomy [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(12): 3651-3659. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||