[1] 朱宝成, 王来福. 秸秆发酵生产高蛋白饲草技术[J]. 中国畜牧业, 2014(10):60-62.
ZHU B C, WANG L F. Technology of straw fermentation producing high protein forage[J]. China Animal Industry, 2014(10):60-62. (in Chinese)
[2] 朱宝成. 超级人工体外瘤胃——秸秆发酵生产高蛋白饲草技术[J]. 北方牧业, 2014(17):14-16.
ZHU B C. Super artificial in vitro rumen——technology of straw fermentation producing high protein forage[J]. The Animal Husbandry, 2014(17):14-16. (in Chinese)
[3] 李红亚, 李术娜, 王树香, 等. 产芽孢木质素降解菌MN-8的筛选及其对木质素的降解[J]. 中国农业科学, 2014, 47(2):324-333.
LI H Y, LI S N, WANG S X, et al. Screening, identification of lignin-degradating Bacillus MN-8 and its characteristics in degradation of maize straw lignin[J]. Scientia Agricultura Sinica, 2014, 47(2):324-333. (in Chinese)
[4] 李红亚, 李术娜, 王树香,等. 解淀粉芽孢杆菌MN-8对玉米秸秆木质纤维素的降解[J]. 应用生态学报, 2015, 26(5):1404-1410.
LI H Y, LI S N, WANG S X, et al. Degradation of lignocellulose in the corn straw by Bacillus amylolique faciens MN-8[J]. Chinese Journal of Applied Ecology, 2015, 26(5):1404-1410. (in Chinese)
[5] 李术娜, 惠小双, 李红亚, 等. 多功能复合菌剂发酵玉米秸秆对育肥羊能量代谢的影响[J]. 动物营养学报, 2015, 27(7):2231-2240.
LI S N, HUI X S, LI H Y,et al.Effects of multifunctional complex microbial agent fermented corn straw on energy metabolism of fattening sheep[J]. Chinese Journal of Animal Nutrition, 2015, 27(7):2231-2240. (in Chinese)
[6] 慧小双. 发酵玉米秸秆饲料对育肥羊氮、碳及能量代谢影响的研究[D]. 保定:河北农业大学, 2013.
HUI X S.Effects of fermented corn straw on performance,energy metabolism and nitrogen, carbon deposition of fattening sheep[D]. Baoding:Hebei Agricultural University, 2013. (in Chinese)
[7] 王尧悦, 赵钊艳, 王兴涛, 等. 日粮营养水平对150~180日龄滩羊瘤胃相关微生物菌群数量、pH和VFA含量的影响[J]. 畜牧兽医学报, 2016, 47(10):2060-2070.
WANG Y Y, ZHAO Z Y, WANG X T, et al. Effect of dietary nutrient levels on the number of related microbes, pH and VFA levels in rumen of tan sheep aged from 150 to 180 days[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(10):2060-2070. (in Chinese)
[8] KOIKE S, YOSHITANI S, KOBAYASHI Y,et al.Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria[J]. FEMS Microbiol Lett, 2003, 229(1):23-30.
[9] KAMRA D N. Rumen microbial ecosystem[J]. Curr Sci, 2005, 89(1):124-135.
[10] 廖奇, 刘旭川, 李清, 等. RNA-Seq技术在瘤胃微生物研究中的应用进展[J]. 动物营养学报, 2015, 27(4):1061-1067.
LIAO Q, LIU X C, LI Q, et al. RNA-Seq technology and its application in rumen microbes[J]. Chinese Journal of Animal Nutrition, 2015, 27(4):1061-1067. (in Chinese)
[11] 李岚捷, 成述儒, 刁其玉, 等. 不同NFC/NDF水平饲粮对犊牛瘤胃发酵参数和微生物区系多样性的影响[J]. 畜牧兽医学报, 2017, 48(12):2347-2357.
LI L J, CHENG S R, DIAO Q Y, et al. Effects of diets with different NFC/NDF levels on the rumen fermentation parameters and bacterial community in male calves[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(12):2347-2357. (in Chinese)
[12] HESS M, SCZYRB A, EGAN R,et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen[J]. Science, 2011, 331(6016):463-467.
[13] KIM M, MORRISON M, YU Z T. Status of the phylogenetic diversity census of ruminal microbiomes[J]. FEMS Microbiol Ecol, 2011, 76(1):49-63.
[14] THOETKIATTIKUL H, MHUANTONG W,LAOTHANACHAREON T,et al. Comparative analysis of microbial profiles in cow rumen fed with different dietary fiber by tagged 16S rRNA gene pyrosequencing[J]. Curr Microbiol, 2013, 67(2):130-137.
[15] BEKELE A Z, KOIKE S, KOBAYASHI Y. Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis[J]. FEMS Microbiol Lett, 2010, 305(1):49-57.
[16] PITTA D W, KUMAR S,VEICCHARELLI B,et al. Bacterial diversity associated with feeding dry forage at different dietary concentrations in the rumen contents of Mehshana buffalo (Bubalus bubalis) using 16S pyrotags[J]. Anaerobe, 2014, 25:31-41.
[17] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QⅡME allows analysis of high-throughput community sequencing data[J]. Nat Methods, 2010, 7(5):335-336.
[18] WANG Q, GARRITY G M,TIEDJE J M, et al. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Appl Environ Microbiol, 2007, 73(16):5261-5267.
[19] 赵圣国. 牛瘤胃脲酶基因多样性分析与酶活性调控[D]. 北京:中国农业科学院, 2012.
ZHAO S G. Diversity of urease gene and regulation of urease activity in the rumen of cattle[D]. Beijing:Chinese Academy of Agricultural Sciences, 2012. (in Chinese)
[20] 田雨佳. 苜蓿干草与苜蓿青贮对奶牛瘤胃蛋白质利用的影响及作用机制的研究[D]. 北京:中国农业大学, 2014.
TIAN Y J.Study on mechanism of nitrogen utilization in rumen of dairy cows with alfalfa as hay or silage[D]. Beijing:China Agricultural University, 2014. (in Chinese)
[21] 毛胜勇, 龙黎明, 朱伟云. 体外研究反刍兽新月形单胞菌及与酵母联用对瘤胃微生物发酵的影响[J]. 草业学报, 2010, 19(4):176-186.
MAO S Y, LONG L M,ZHU W Y.Effect of Selenomonas ruminantium alone, or in combination with yeast cultures, on in vitro rumen bacterial fermentation[J]. Acta Prataculturae Sinica, 2010, 19(4):176-186. (in Chinese)
[22] SOGIN M L, MORRISON H G, HUBER J A, et al. Microbial diversity in the deep sea and the underexplored "rare biosphere"[J]. Proc Natl Acad Sci U S A, 2006, 103(32):12115-12120.
[23] MAO S Y, ZHANG R Y, WANG D S, et al. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing[J]. Anaerobe, 2013, 24:12-19.
[24] MYER P R, KIM M, FREETLY H C, et al. Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers[J]. J Microbiol Methods, 2016, 127:132-140.
[25] GHARECHAHI J, ZAHIRI H S, NOGHABI K A, et al. In-depth diversity analysis of the bacterial community resident in the camel rumen[J]. Syst Appl Microbiol, 2015, 38(1):67-76.
[26] SINGH K M, AHIR V B, TRIPATHI A K,et al.Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen:a preliminary study[J]. Mol Biol Rep, 2012, 39(4):4841-4848.
[27] DE OLIVEIRA M N, JEWELL K A, FREITAS F S, et al. Characterizing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer[J]. Vet Microbiol, 2013, 164(3-4):307-314.
[28] ZHANG R Y, ZHU W Y, ZHU W, et al. Effect of dietary forage sources on rumen microbiota, rumen fermentation and biogenic amines in dairy cows[J]. J Sci Food Agric, 2014, 94(9):1886-1895.
[29] HOOK S E, STEELE M A, NORTHWOOD K S, et al. Impact of subacute ruminal acidosis (SARA) adaptation and recovery on the density and diversity of bacteria in the rumen of dairy cows[J]. FEMS Microbiol Ecol, 2011, 78(2):275-284.
[30] ZOETENDAL E G, PLUGGE C M, AKKERMANS A D L, et al. Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces[J].Int J Syst Evol Microbiol, 2003,53(Pt 1):211-215.
[31] LIMAM R D, BOUCHEZ T, CHOUARI R, et al. Detection of WWE2-related Lentisphaerae by 16S rRNA gene sequencing and fluorescence in situ hybridization in landfill leachate[J]. Can J Microbiol, 2010, 56(10):846-852.
[32] MEYER M, STENZEL U,HOFREITER M.Parallel tagged sequencing on the 454 platform[J]. Nat Protoc, 2008, 3(2):267-278.
[33] MATSUI H, OGATA K, TAJIMA K, et al. Phenotypic characterization of polysaccharidases produced by four Prevotella type strains[J]. Curr Microbiol, 2000, 41(1):45-49.
[34] BEKELE A Z, KOIKE S, KOBAYASHI Y. Phylogenetic diversity and dietary association of rumen Treponema revealed using group-specific 16S rRNA gene-based analysis[J]. FEMS Microbiol Lett, 2011,316(1):51-60.
[35] PURUSHE J, FOUTS D E, MORRISON M,et al. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii:insights into their environmental niche[J]. Microb Ecol, 2010, 60(4):721-729.
[36] GRILLI D J, FLIEGEROVÁ K, KOPECNÝ J, et al. Analysis of the rumen bacterial diversity of goats during shift from forage to concentrate diet[J]. Anaerobe, 2016, 42:17-26.
[37] CUNHA I S, BARRETO C C, COSTA O Y A, et al. Bacteria and Archaea community structure in the rumen microbiome of goats (Capra hircus) from the semiarid region of Brazil[J]. Anaerobe, 2011, 17(3):118-124.
[38] 刘大程, 卢德勋, 侯先志, 等. 不同品质粗饲料日粮对瘤胃发酵及主要纤维分解菌的影响[J]. 中国农业科学, 2008, 41(4):1199-1206.
LIU D C, LU D X, HOU X Z, et al. Effect of dietary forage of different qualities on rumen fermentation and predominant fibrolytic bacterial populations[J]. Scientia Agricultura Sinica, 2008, 41(4):1199-1206. (in Chinese)
[39] KOIKE S, PAN J, KOBAYASHI Y,et al. Kinetics of in Sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR[J]. J Dairy Sci, 2003, 86(4):1429-1435. |