

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (11): 5839-5851.doi: 10.11843/j.issn.0366-6964.2025.11.040
• Basic Veterinary Medicine • Previous Articles Next Articles
ZHENG Xiaoru(
), WANG Yidan, ZHANG Lihong, YANG Yingying, ZHAO Xinru, LI Min, HUANG Juan, ZHANG Qiaoya*(
), CAO Zhi*(
)
Received:2024-07-29
Online:2025-11-23
Published:2025-11-27
Contact:
ZHANG Qiaoya, CAO Zhi
E-mail:zzwyyxrr@163.com;201801056@qau.edu.cn;201901252@qau.edu.cn
CLC Number:
ZHENG Xiaoru, WANG Yidan, ZHANG Lihong, YANG Yingying, ZHAO Xinru, LI Min, HUANG Juan, ZHANG Qiaoya, CAO Zhi. Construction and Proteomic Analysis of Macrophage Cell Lines Stably Expressing NS3-NS4A and NS3pro-NS4A of Classical Swine Fever Virus[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5839-5851.
Table 1
Primers specific for CSFV NS2-NS3 and NS3-NS4A"
| Primer名称 Primer name | 序列(5′→3′) Sequence |
| 2-3-F1 | GCTCTAGAATGGGAAAGATAGATGGCGG |
| 2-3-R1 | CAAACGGCAGGCCCTCTAAGCACCCAGC |
| 2-3-F2 | GCTGGGTGCTTAGAGGGCCTGCCGTTTG |
| 2-3-R2 | ATAAGAATGCGGCCGCTCATAGACCAACTAC |
| 2B-3pro-F1 | GCTCTAGAATGGAAGGGGTATACCTT |
| 2B-3pro-R2 | ATAAGAATGCGGCCGCTCAGTAGCAAGGGTT |
| 3-4A-F1 | GCTCTAGAATGGGGCCTGCCGTTTG |
| 3-4A-R1 | TTCTCAGCTGTTGATAGACCAACTACTT |
| 3-4A-F2 | AAGTAGTTGGTCTATCAACAGCTGAGAA |
| 3-4A-R2 | ATAAGAATGCGGCCGCTCATAGCTCCTTCAA |
| 3pro-4A-R1 | TTCTCAGCTGTTGAGTAGCAAGGGTTAT |
| 3pro-4A-F2 | ATAACCCTTGCTACTCAACAGCTGAGAA |
Fig. 1
PCR amplification results of NS2, NS3, NS2B, and NS3pro fragments M. DL5000 marker; 1 and 2.2-3-F1 and 2-3-R1 amplified NS2 at 1 385 bp; 3 and 4.2-3-F2 and 2-3-R2 amplified NS3 at 2 063 bp; 5 and 6.2B-3pro-F1 and 2-3-R1 amplified NS2B at 766 bp; 7 and 8.2-3-F2 and 2B-3pro-R2 amplified NS3pro with 687 bp"
Fig. 2
PCR amplification results of NS3′, NS4A, NS3pro′, and NS4A′ fragments M. DL5000 marker; 9, 10.3-4A-F1, 3-4A-R1 amplified 2 074 bp NS3′; 11, 12.3-4A-F2, 3-4A-R2 amplified 225 bp NS4A; 13, 14.3-4A-F1, 3pro-4A-R1 amplified 697 bp NS3pro′; 15, 16.3pro-4A-F2, 3-4A-R2 amplified 206 bp NS4A′"
Table 2
Differential proteins in the MAPK signaling pathway"
| 通路 Pathway | 项目 Item | 蛋白序号 Protein No. | 蛋白名称 Protein name | 基因 Gene | NCBI蛋白登录号 NCBl protein accession No. | 置信度/% Max identity | |
| 人 Human | 猪 Pig | ||||||
| MAPK | 上调蛋白 Up-regulated protein | 1 | phospholipase A2 group IVA | PLA2G4A | NP_001298122.2 | XP_020919484.1 | 83 |
| 2 | amphiregulin | AREG | NP_001648.1 | NP_999541.1 | 90 | ||
| 3 | tumor protein p53 | P53 | NP_000537.3 | NP_998989.3 | 99 | ||
| 下调蛋白 Down-regulated protein | 4 | tumor protein p53 | P53 | NP_000537.3 | NP_998989.3 | 99 | |
| 5 | growth factor receptor bound protein 2 | GRB2 | NP_002077.1 | NP_001131100.1 | 98 | ||
| 6 | TNFRSF1A associated via death domain | TRADD | NP_001310481.1 | XP_020949709.1 | 99 | ||
| 7 | TAO kinase 3 | TAOK3 | NP_001333416.1 | XP_001924435.2 | 95 | ||
| 8 | serine/threonine kinase 3 | STK3 | NP_001243241.1 | XP_005655407.3 | 93 | ||
| 9 | stathmin 1 | STMN1 | NP_001138926.1 | XP_005665169.1 | 81 | ||
| 10 | protein phosphatase, Mg2+/Mn2+ dependent 1B | PPM1B | NP_001028729.1 | XP_003125227.2 | 91 | ||
| 11 | mitogen-activated protein kinase kinase 4 | MAP2K4 | NP_001268364.1 | XP_020923549.1 | 93 | ||
| 12 | inhibitor of nuclear factor kappa B kinase regulatory subunit gamma | IKBKG | NP_001093326.2 | NP_001106524.1 | 96 | ||
| 13 | amphiregulin | AREG | NP_001648.1 | NP_999541.1 | 90 | ||
| 14 | nuclear factor kappa B subunit 1 | NFKB1 | NP_001158884.1 | NP_001041697.1 | 90 | ||
| 15 | caspase 3 | CASP3 | NP_001341706.1 | NP_999296.1 | 91 | ||
Table 3
Differential proteins in the PI3K signaling pathway"
| 通路 Pathway | 项目 Item | 蛋白序号 Protein No. | 蛋白名称 Protein name | 基因 Gene | NCBI蛋白登录号 NCBl protein accession No. | 置信度/% Max identity | |
| 人 Human | 猪 Pig | ||||||
| P13K | 上调蛋白 Up-regulated protein | 1 | integrin subunit beta 5 | ITGB5 | NP_001341693.1 | NP_001233598.1 | 99 |
| 2 | BCL2 like 1 | BCL2L1 | NP_001182.1 | NP_999450.1 | 99 | ||
| 3 | phosphoenolpyruvate carboxykinase 2, mitochondrial | PCK2 | NP_001018083.2 | NP_001155225.1 | 96 | ||
| 4 | integrin subunit beta 5 | ITGB5 | NP_001341693.1 | NP_001233598.1 | 99 | ||
| 5 | thrombospondin 4 | THBS4 | NP_001293141.1 | XP_020940149.1 | 95 | ||
| 6 | amphiregulin | AREG | NP_001648.1 | NP_999541.1 | 90 | ||
| 7 | tumor protein p53 | P53 | NP_000537.3 | NP_998989.3 | 99 | ||
| 8 | collagen type Ⅵ alpha 2 chain | COL6A2 | NP_001840.3 | XP_020938158.1 | 93 | ||
| 下调蛋白 Down-regucated protein | 9 | tumor protein p53 | P53 | NP_000537.3 | NP_998989.3 | 99 | |
| 10 | collagen type Ⅵ alpha 2 chain | COL6A2 | NP_001840.3 | XP_020938158.1 | 93 | ||
| 11 | cyclin dependent kinase 4 | CDK4 | NP_000066.1 | NP_001116569.1 | 98 | ||
| 12 | growth factor receptor bound protein 2 | GRB2 | NP_002077.1 | NP_001131100.1 | 98 | ||
| 13 | protein tyrosine kinase 2 | PTK2 | NP_001186578.1 | XP_020944510.1 | 96 | ||
| 14 | protein phosphatase 2 regulatory subunit B’alpha | PPP2R5A | NP_001186685.1 | NP_001093662.1 | 99 | ||
| 15 | heat shock protein 90 alpha family class B member 1 | HSP90AB1 | NP_001258898.1 | NP_001231362.1 | 99 | ||
| 16 | cell division cycle 37, HSP90 cochaperone | CDC37 | NP_008996.1 | NP_001116568.1 | 99 | ||
| 17 | eukaryotic translation initiation factor 4B | EIF4B | NP_001287750.1 | XR_002343952.1 | 93 | ||
| 18 | inhibitor of nuclear factor kappa B kinase regulatory subunit gamma | IKBKG | NP_001093326.2 | NP_001106524.1 | 96 | ||
| 19 | amphiregulin | AREG | NP_001648.1 | NP_999541.1 | 90 | ||
| 20 | nuclear factor kappa B subunit 1 | NFKB1 | NP_001158884.1 | NP_001041697.1 | 90 | ||
| 21 | thrombospondin 1 | THBS1 | NP_003237.2 | NP_001231465.1 | 90 | ||
Fig. 7
The influence of overexpressed lentivirus CSFV NS3-NS4A on NFκB1, IKBKG, CDK4, CASP3 and CDC37 in MAPK and PI3K signaling pathways Data are shown as the mean values±s of three independent experiments. * P. < 0.05, ** P. < 0.01, *** P. < 0.001, were calculated using the t-test for NS3-NS4A or CSFV infected versus empty vector (CMV) infected group"
| 1 |
LI X W , SONG Y W , WANG X Y , et al. The regulation of cell homeostasis and antiviral innate immunity by autophagy during classical swine fever virus infection[J]. Emerg Microbes Infect, 2023, 12 (1): 2164217.
doi: 10.1080/22221751.2022.2164217 |
| 2 |
LI W H , ZHANG Z L , ZHANG L L , et al. Antiviral role of serine incorporator 5 (SERINC5) proteins in classical swine fever virus infection[J]. Front Microbiol, 2020, 11, 17.
doi: 10.3389/fmicb.2020.00017 |
| 3 |
NING P B , ZHOU Y L , LIANG W L , et al. Different RNA splicing mechanisms contribute to diverse infective outcome of classical swine fever viruses of differing virulence: insights from the deep sequencing data in swine umbilical vein endothelial cells[J]. PeerJ, 2016, 4, e2113.
doi: 10.7717/peerj.2113 |
| 4 |
LI S , WANG J , YANG Q , NAVEED A M , et al. Complex virus-host interactions involved in the regulation of classical swine fever virus replication: A minireview[J]. Viruses, 2017, 9 (7): 171.
doi: 10.3390/v9070171 |
| 5 |
SUN J F , LI J Y , LI L M , et al. Classical swine fever virus NS5A protein antagonizes innate immune response by inhibiting the NF-xB signaling[J]. Virol Sin, 2023a, 38, 900- 910.
doi: 10.1016/j.virs.2023.09.002 |
| 6 |
SUN L D , NIU J Q , ZHANG J S , et al. Thermostable T cell multiepitope nanoparticle antigens inducing potent immune responses against the swine fever virus[J]. Acs Infect Dis, 2023b, 9, 2358- 2368.
doi: 10.1021/acsinfecdis.3c00506 |
| 7 | BORDON Y . Disturbance of cytoskeleton primes RIG-I-like receptors[J]. Nat Rev Immunol, 2022, 22, 654- 655. |
| 8 | CAO T , LI X Y , XU Y H , et al. Npro of Classical swine fever virus suppresses type Ⅲ interferon production by inhibiting IRF1 expression and its nuclear translocation[J]. Viruses-Basel, 2019a, 11, 18. |
| 9 | WALTHER T , BRUHN B , ISKEN O , et al. A novel NS3/4A protease dependent cleavage site within pestiviral NS2[J]. J Gen Virol, 2021, 102 (10): 119- 128. |
| 10 |
FELLENBERG J , DUBRAU D , ISKEN O , et al. Packaging defects in pestiviral NS4A can be compensated by mutations in NS2 and NS3[J]. J Virol, 2023, 97 (9): e0057223.
doi: 10.1128/jvi.00572-23 |
| 11 |
TAUTZ N , KAISER A , THIEL H J . NS3 serine protease of bovine viral diarrhea virus: characterization of active site residues, NS4A cofactor domain, and protease-cofactor interactions[J]. Virology, 2000, 273 (2): 351- 63.
doi: 10.1006/viro.2000.0425 |
| 12 | DUBRAN D , SCHWINDT S , KLEMENS O , et al. Determination of critical requirements for classical swine fever virus NS2-3-independent virion formation[J]. J Virol, 2019, 93 (18): e00679- 00619. |
| 13 | ABDULLAH M , MCWHIRTER S M , SUO Z C . Modulation of kinase activities in vitro by hepatitis C virus protease NS3/NS4A mediated-cleavage of key immune modulator kinases[J]. Cells, 2023, 12, 20. |
| 14 |
李易聪, 蒲飞洋, 冯茜莉, 等. 牛病毒性腹泻病毒蛋白的免疫学特性以及相关疫苗研究进展[J]. 畜牧兽医学报, 2023, 54 (4): 1381- 1391.
doi: 10.11843/j.issn.0366-6964.2023.04.004 |
|
LI Y C , PU F Y , FENG X L , et al. Research progress on immunological characteristics of bovine viral diarrhea virus protein and vaccines[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (4): 1381- 1391.
doi: 10.11843/j.issn.0366-6964.2023.04.004 |
|
| 15 | FAN S Q , WU K K , LUO C W , et al. Dual NDP52 function in persistent CSFV infection[J]. Front Microbiol, 2020, 10, 13. |
| 16 |
LAMOTHE-REYES Y , FIGUEROA M , SANCHEZ O . Host cell factors involved in classical swine fever virus entry[J]. Vet Res, 2023, 54 (1): 115.
doi: 10.1186/s13567-023-01238-x |
| 17 |
GVUONO E , RAMIREZ-MEDINA E , SILVA E , et al. Classical swine fever virus structural glycoprotein E2 interacts with host protein ACADM during the virus infectious cycle[J]. Viruses, 2023, 15 (5): 1036.
doi: 10.3390/v15051036 |
| 18 |
王向鹏, 魏蕊芳, 肖书奇, 等. 慢病毒载体介导稳定表达CD163的PAM细胞系的建立及对PRRSV感染的研究[J]. 畜牧兽医学报, 2013, 44 (11): 1797- 1804.
doi: 10.11843/j.issn.0366-6964.2013.11.014 |
|
WANG X P , WEI R F , XIAO S Q , et al. Establishment of a Lentivirus-mediated stable CD163-expressing PAM cell line and research on PRRSV infection[J]. Journal of Animal Husbandry and Veterinary Medicine, 2013, 44 (11): 1797- 1804.
doi: 10.11843/j.issn.0366-6964.2013.11.014 |
|
| 19 | 方鑫玉, 周磊, 杨汉春. 猪繁殖与呼吸综合征病毒受体CD163的研究进展[J]. 中国兽医杂志, 2024, 60 (12): 99- 105. |
| FANG X Y , ZHOU L , YANG H C . Research progress on CD163, the receptor of porcine reproductive and respiratory syndrome virus[J]. Chinese Veterinary Science, 2024, 60 (12): 99- 105. | |
| 20 | 周峰, 赵军, 常洪涛, 等. 稳定表达CD163的PAM细胞系的建立[C]. 中国畜牧兽医学会动物传染病学分会, 2015: 2. |
| ZHOU F, ZHAO J, CHANG H T, et al. Establishment of PAM cell lines stably expressing CD163[C]. Society of Animal Infectious Diseases, Chinese Association of Animal Husbandry and Veterinary Medicine, 2015: 2. (in Chinese) | |
| 21 |
DIEP N , HAYAKAWA-SUGAYA Y , ISHIKAWA S . Establishment of an immortalized porcine alveolar macrophage cell line that supports efficient replication of porcine reproductive and respiratory syndrome viruses[J]. Pathogens, 2024, 13 (12): 1026.
doi: 10.3390/pathogens13121026 |
| 22 |
刘元杰, 徐璐, 朱元源, 等. 猪瘟病毒C株表位突变毒株的构建及拯救[J]. 畜牧兽医学报, 2024, 55 (2): 698- 705.
doi: 10.11843/j.issn.0366-6964.2024.02.027 |
|
LIU Y J , XU L , ZHU Y Y , et al. Construction and rescue of epitope mutant of swine fever virus C strain[J]. Journal of Animal Husbandry and Veterinary Medicine, 2024, 55 (2): 698- 705.
doi: 10.11843/j.issn.0366-6964.2024.02.027 |
|
| 23 |
荆扬, 王玉淼, 李洋, 等. 稳定表达PRRSV M蛋白的MARC-145ORF6细胞系的构建及其对PRRSV增殖的影响[J]. 畜牧兽医学报, 2024, 55 (3): 1159- 1169.
doi: 10.11843/j.issn.0366-6964.2024.03.028 |
|
JING Y , WANG Y M , LI Y , et al. Construction of MARC-145ORF6 cell line stably overexpressing PRRSV M protein and its effect on PRRSV proliferation[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (3): 1159- 1169.
doi: 10.11843/j.issn.0366-6964.2024.03.028 |
|
| 24 |
ALBAMAZ J D , KITE J , OLIVEIRA M , et al. Quantitative proteomics defines mechanisms of antiviral defence and cell death during modified vaccinia Ankara infection[J]. Nat Commun, 2023, 14 (1): 8134.
doi: 10.1038/s41467-023-43299-8 |
| 25 | 蔡彬祥, 於子鼎, 曾显成, 等. 猪瘟病毒与宿主天然免疫系统的相互作用[J]. 微生物学通报, 2017, 44 (12): 2997- 3006. |
| CAI B X , YU Z A , ZENG X C , et al. Interaction between classical swine fever virus and host innate immune system[J]. Microbiology Bulletin, 2017, 44 (12): 2997- 3006. | |
| 26 |
PRESTI D , QUAQUARINI E . The PI3K/AKT/mTOR and CDK4/6 pathways in endocrine resistant HR+/HER2-metastatic breast cancer: biological mechanisms and new treatments[J]. Cancers, 2019, 11 (9): 1242.
doi: 10.3390/cancers11091242 |
| 27 | ESKANDARI E , NEGRI G L , TAN S , et al. Dependence of human cell survival and proliferation on the CASP3 prodomain[J]. Cell Death Discov, 2024, 10, 63. |
| 28 |
JELLUSOVA J , RICKERT R C . The PI3K pathway in B cell metabolism[J]. Crit Rev Biochem Mol Biol, 2016, 51 (5): 359- 378.
doi: 10.1080/10409238.2016.1215288 |
| [1] | ZHANG Xiaoling, HE Xinglin, ZHANG Mengdi, LI Pengfei, SUN Yumei, MA Hailong, ZHU Hongmei, ZHANG Mengjia, LI Wentao. Preparation of E2 Protein Nanoparticles from Classical Swine Fever Virus and the Immunogenicity Study in Rabbit [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2301-2311. |
| [2] | Yingju XIA, Yan LI, Jun LIU, Yuan XU, Fangtao LI, Xingqi ZOU, Qi LI, Jiaxin LI, Junjie ZHAO, Qianyi ZHANG, Yebing LIU, Lu XU. Correlation Analysis of Neutralizing Antibody and E2 Antibody against Classical Swine Fever Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4590-4596. |
| [3] | ZOU Hong, XIA Yingju, LI Ling, XU Lu, ZHAO Junjie, WANG Tuanjie, ZHANG Qianyi, SONG Zhenhui. Establishment and Preliminary Application of a Dual Real-time RT-PCR Assay for CSFV and BVDV [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4422-4427. |
| [4] | SHEN Jiakun, TANG Qian, CUI Yangyang, JIN Xiaoming, LI Yansen, LI Chunmei. Fine Particulate Matter from Pig House Promote M1 Polarization in Porcine Primary Alveolar Macrophage [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(6): 1717-1726. |
| [5] | MA Yuan, SHI Zhengwang, LUO Juncong, YANG Bo, WANG Lijuan, WAN Ying, SONG Rui, CAO Liyan, ZHOU Gaijing, TIAN Hong, ZHENG Haixue, CHEN Yixia. Establishment and Application of Chemiluminescence Detection Method for Antibody against Classical Swine Fever Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(6): 1744-1752. |
| [6] | WANG Shujuan, BAN Fuguo, WANG Dongfang, LIU Ying, ZHAO Xueli, XIE Caihua, WANG Cui, MA Zhenyuan, YANG Haibo, CHAI Mao, YAN Ruoqian. Establishment and Application of a Duplex TaqMan MGB FQ-PCR for Differential Detection of African Swine Fever Virus and Classical Swine Fever Virus Wild Strains [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(1): 177-184. |
| [7] | XU Lu, XIA Yingju, ZHANG Qianyi, ZHANG Wenwen, WANG Zhen, LI Cui, ZOU Xingqi, ZHU Yuanyuan, XU Yuan, WANG Zhao, ZHAO Qizu, WANG Qin. Analysis of National Proficiency Testing Program for Classical Swine Fever Virus Antibody Detection by ELISA [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(9): 2250-2256. |
| [8] | XU Lu, ZHANG Qianyi, XIA Yingju, WANG Zhen, LI Cui, ZOU Xingqi, WANG Qin, ZHAO Qizu. Result Analysis of National Proficiency Testing Program for the Detection of Classical Swine Fever Virus Nucleic Acid [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(8): 1949-1955. |
| [9] | HAN Yuying, XIE Libao, LI Yongfeng, QIU Huaji. Generation and Characterization in Rabbits of a Reporter Classical Swine Fever Virus Vaccine C-strain Expressing the Enhanced Green Fluorescent Protein [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7): 1699-1709. |
| [10] | WEI Qiang, LIU Yunchao, BAI Yilin, FENG Hua, SONG Yapeng, ZHANG Gaiping. Effect of Signal Peptide on the Secretory Expression of CSFV E2 Protein in Baculovirus Expression System [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(1): 120-127. |
| [11] | MA Ya-ru, HU Guang-dong, WANG Hong-hong, JIA Mi-la, XU Jin-feng, CHEN Chuang-fu, SAI Wu-jia-fu. Construction and Identification of BHK-21 Cell Line Stably Expressing Ovine NYD-SP27 [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(4): 637-644. |
| [12] | LIANG Wu-long,FANG Jia,LIN Zhi,ZHENG Min-ping,BAO Chang-lei,WANG Tao,ZHANG Yan-ming. Classical Swine Fever Virus Entry into ST Cells by Clathrin-mediated Endocytosis Pathway [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(1): 140-149. |
| [13] | KANG Kai,LIN Zhi,GAO Hai-hui,ZHANG Cheng-cheng,LI He-lin,LIANG Wu-long,WANG Jing,CAO Zhi,ZHANG Yan-ming. Classical Swine Fever Virus Promotes Cell Autophagy which Facilitates Virus Proliferation [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2014, 45(9): 1481-1487. |
| [14] | DONG Hong,LI Dan,CHEN Jia-ning,LI Su,HE Wen-rui,FENG Shuo,HE Fan,LIAO Ya-jin,SUN Yuan,HU Yong-hao. Identification of the Interaction between Classical Swine Fever Virus C Protein and Porcine β-actin [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2014, 45(12): 1995-1999. |
| [15] | HU Ji-ming;YANG Pei-pei;WANG Ying;SUN Hai-fang;HUANG Juan;CHEN Qiao-qiao;YANG Rui-mei;ZHANG Chuan-mei;QIN Xiao-bing;SHAN Hu. Development of RT-PCR-RFLP for Detection and Differentiation of Wild-type and Vaccine Viruses of Classical Swine Fever Virus [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2012, 43(6): 943-949. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||