Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (8): 3436-3445.doi: 10.11843/j.issn.0366-6964.2024.08.017
• Animal Genetics and Breeding • Previous Articles Next Articles
Yifan NIU1,2(), Chongyang LI2, Baigao YANG2, Peipei ZHANG2, Hang ZHANG2, Xiaoyi FENG2, Jianhua CAO2, Zhou YU2, Youji MA1,*(
), Xueming ZHAO2,*(
)
Received:
2023-12-11
Online:
2024-08-23
Published:
2024-08-28
Contact:
Youji MA, Xueming ZHAO
E-mail:nyf.niuyifan@qq.com;yjma@gsau.edu.cn;zhaoxueming@caas.cn
CLC Number:
Yifan NIU, Chongyang LI, Baigao YANG, Peipei ZHANG, Hang ZHANG, Xiaoyi FENG, Jianhua CAO, Zhou YU, Youji MA, Xueming ZHAO. Evaluation of the Effect of Different Single Cell Whole Genome Amplification Systems on the Amplification of Bovine Trace Blood DNA[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3436-3445.
Table 2
Statistical analysis results of DNA amplification products of trace bovine blood"
体系名称 System name | 扩增产物浓度/(ng·μL-1) Post-amplification concentration | 体积/μL Volume | 扩增产物总质量/μg Total mass | 扩增倍数 Amplification multiple |
MDA | 138.67±14.43A | 50 | 6.93±0.72A | 6.1×103~7.35×103 A |
MALBAC | 19.63±0.98B | 65 | 1.27±0.06B | 1.2×103~1.31×103 B |
Table 3
Summary table of sequencing data after DNA amplification of trace bovine blood"
样本名称 Sample name | 原始数据/G Raw data | 原始reads Raw reads | 过滤后的碱基量/G Clean base | 过滤后的reads数目 Clean reads | 有效碱基比率/% Effective rate | Q20/% | Q30/% | GC/% |
NC-A | 68.75 | 229 182 528 | 68.75 | 229 028 205 | 99.93 | 97.29 | 92.28 | 42.72 |
NC-B | 72.08 | 240 265 726 | 71.98 | 240 132 402 | 99.94 | 97.28 | 92.27 | 42.77 |
NC-C | 65.32 | 217 735 046 | 65.21 | 217 602 659 | 99.94 | 97.21 | 92.07 | 43.15 |
MDA-A | 86.45 | 288 158 236 | 109.88 | 366 596 150 | 99.94 | 96.56 | 90.30 | 41.88 |
MDA-B | 111.18 | 370 586 573 | 60.65 | 202 316 763 | 99.94 | 97.81 | 93.61 | 41.79 |
MDA-C | 103.68 | 345 605 125 | 73.80 | 246 140 648 | 99.94 | 97.40 | 92.58 | 41.69 |
MALBAC-A | 110.05 | 366 826 265 | 86.31 | 287 837 233 | 99.89 | 96.65 | 90.58 | 42.69 |
MALBAC-B | 60.73 | 202 436 895 | 110.98 | 370 296 021 | 99.92 | 97.13 | 91.85 | 42.85 |
MALBAC-C | 73.89 | 246 290 038 | 103.49 | 345 336 461 | 99.92 | 96.93 | 91.32 | 43.16 |
小计Total | 752.13 | 2 507 086 432 | 751.05 | 2 505 286 542 | ||||
总体均值Average | 99.93 | 97.14 | 91.87 | 42.52 | ||||
Average |
Table 4
Summary table of resequencing results of bovine 1 ng blood DNA amplification products"
样本名称 Sample name | 总reads数目 Total reads | 比对reads数目 Mapped reads | 比对率/% Mapped ratio | 正确比对reads数目 Properly mapped reads | 正确比对率/% Properly mapped ratio | 重复率/% Dup ratio |
NC-A | 458 957 384 | 458 409 872 | 99.88 | 450 607 404 | 98.37 | 2.27 |
NC-B | 481 227 738 | 480 697 245 | 99.89 | 472 836 054 | 98.45 | 2.15 |
NC-C | 436 169 391 | 435 532 805 | 99.85 | 428 305 230 | 98.41 | 2.33 |
MDA-A | 589 036 553 | 588 273 032 | 99.87 | 539 900 540 | 93.79 | 1.34 |
MDA-B | 755 359 505 | 754 544 244 | 99.89 | 711 784 484 | 96.11 | 1.55 |
MDA-C | 707 734 945 | 706 809 010 | 99.87 | 655 106 940 | 94.85 | 1.56 |
MALBAC-A | 757 009 041 | 755 925 119 | 99.86 | 689 538 526 | 94.05 | 2.37 |
MALBAC-B | 418 273 461 | 417 698 203 | 99.86 | 379 232 754 | 93.72 | 1.50 |
MALBAC-C | 507 852 724 | 507 177 062 | 99.87 | 463 366 622 | 94.13 | 2.11 |
小计Total | 5 111 620 742 | 5 105 066 592 | 4 790 678 554 | |||
总体均值Average | 99.87 | 95.76 | 1.91 | |||
Average |
Fig. 3
Comparative statistical analysis of DNA amplification products of trace bovine blood A. Shows the mapping rate of amplification products of the two systems; B. Shows the properly mapped ratio; C. Shows the dup ratio. The different capital letters mean extremely significant differences (P<0.01), the different small letters mean significant differences (P<0.05), and the same or no letter marks mean that there is no significant difference (P>0.05), the same as below"
Table 5
Statistical results of sequencing and quality control of DNA amplified products from bovine 1 ng blood"
对照组 Control group | 扩增组 Amplification group | 分型一致率/% Consistent rate of typing | 分型一致位点数 Common loci | 分型不一致位点数 Differed loci | 检出位点数 Call loci | 对照组缺失的位点 Control group drop loci |
NC-A | MDA-A | 97.91 | 11 352 029 | 242 889 | 11 594 918 | 37 974 |
MALBAC-A | 88.93 | 9 415 570 | 1 172 572 | 10 588 142 | 25 968 | |
NC-B | MDA-B | 98.07 | 11 404 499 | 223 896 | 11 628 395 | 33 366 |
MALBAC-B | 86.79 | 8 579 289 | 1 305 443 | 9 884 732 | 15 952 | |
NC-C | MDA-C | 97.89 | 11 391 983 | 245 867 | 11 637 850 | 39 855 |
MALBAC-C | 86.79 | 8 750 915 | 1 331 445 | 10 082 360 | 19 658 | |
对照组 Control group | 扩增组 Amplification group | 扩增组缺失位点 Amplification group drop loci | 两组同时缺失位点 Simultaneous drop loci in both groups | 等位基因缺失率/% Allele drop rate | 假阳性率/% False positive rate | 检出率/% Call rate |
NC-A | MDA-A | 78 636 | 79 601 | 0.93 | 0.81 | 98.66 |
MALBAC-A | 1 085 412 | 91 607 | 4.88 | 4.46 | 90.02 | |
NC-B | MDA-B | 66 664 | 62 704 | 0.83 | 0.79 | 98.90 |
MALBAC-B | 1 810 327 | 80 118 | 7.19 | 3.67 | 83.97 | |
NC-C | MDA-C | 53 837 | 59 587 | 0.79 | 1.00 | 99.04 |
MALBAC-C | 1 609 327 | 79 784 | 6.81 | 4.14 | 85.67 |
1 |
LAGE J M , LEAMON J H , PEJOVIC T , et al. Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-CGH[J]. Genome Res, 2003, 13 (2): 294- 307.
doi: 10.1101/gr.377203 |
2 |
WANG X Y , LIU Y P , LIU H N , et al. Recent advances and application of whole genome amplification in molecular diagnosis and medicine[J]. MedComm, 2022, 3 (1): e116.
doi: 10.1002/mco2.116 |
3 | 姚雅馨, 喇永富, 狄冉, 等. 不同单细胞全基因组扩增方法的比较及MALBAC在辅助生殖中的应用[J]. 遗传, 2018, 40 (8): 620- 631. |
YAO Y X , LA Y F , DI R , et al. Comparison of different single cell whole genome amplification methods and MALBAC applications in assisted reproduction[J]. Hereditas (Beijing), 2018, 40 (8): 620- 631. | |
4 |
ZHOU X X , XU Y , ZHU L B , et al. Comparison of multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC) in limited DNA sequencing based on tube and droplet[J]. Micromachines (Basel), 2020, 11 (7): 645.
doi: 10.3390/mi11070645 |
5 |
DEAN F B , HOSONO S , FANG L H , et al. Comprehensive human genome amplification using multiple displacement amplification[J]. Proc Natl Acad Sci U S A, 2002, 99 (8): 5261- 5266.
doi: 10.1073/pnas.082089499 |
6 |
ORDÓÑEZ C D , REDREJO-RODRÍGUEZ M . DNA polymerases for whole genome amplification: considerations and future directions[J]. Int J Mol Sci, 2023, 24 (11): 9331.
doi: 10.3390/ijms24119331 |
7 |
KHAN T , BECKER T M , PO J W , et al. Single-circulating tumor cell whole genome amplification to unravel cancer heterogeneity and actionable biomarkers[J]. Int J Mol Sci, 2022, 23 (15): 8386.
doi: 10.3390/ijms23158386 |
8 |
LU N , QIAO Y , AN P F , et al. Exploration of whole genome amplification generated chimeric sequences in long-read sequencing data[J]. Brief Bioinform, 2023, 24 (5): bbad275.
doi: 10.1093/bib/bbad275 |
9 |
PATRO S C , NIYONGABO A , MALDARELLI F , et al. New approaches to multi-parametric HIV-1 genetics using multiple displacement amplification: determining the what, how, and where of the HIV-1 reservoir[J]. Viruses, 2021, 13 (12): 2475.
doi: 10.3390/v13122475 |
10 |
OSPINO M C , ENGEL K , RUIZ-NAVAS S , et al. Evaluation of multiple displacement amplification for metagenomic analysis of low biomass samples[J]. ISME Commun, 2024, 4 (1): ycae024.
doi: 10.1093/ismeco/ycae024 |
11 |
LIU Y , LIANG S M , WANG B , et al. Advances in single-cell sequencing technology and its application in poultry science[J]. Genes (Basel), 2022, 13 (12): 2211.
doi: 10.3390/genes13122211 |
12 |
SHOJAEI SAADI H A , VIGNEAULT C , SARGOLZAEI M , et al. Impact of whole-genome amplification on the reliability of pre-transfer cattle embryo breeding value estimates[J]. BMC Genomics, 2014, 15 (1): 889.
doi: 10.1186/1471-2164-15-889 |
13 |
CHEN M F , SONG P F , ZOU D , et al. Correction: comparison of multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC) in single-cell sequencing[J]. PLoS One, 2015, 10 (4): e0124990.
doi: 10.1371/journal.pone.0124990 |
14 |
HUANG L , MA F , CHAPMAN A , et al. Single-cell whole-genome amplification and sequencing: methodology and applications[J]. Annu Rev Genom Hum Genet, 2015, 16, 79- 102.
doi: 10.1146/annurev-genom-090413-025352 |
15 |
FU Y , SHEN X T , WU H T , et al. Preimplantation genetic testing for monogenic disease of spinal muscular atrophy by multiple displacement amplification: 11 unaffected livebirths[J]. Int J Med Sci, 2019, 16 (9): 1313- 1319.
doi: 10.7150/ijms.32319 |
16 |
YAO K , GONZÁLEZ-ESCALONA N , HOFFMANN M . Multiple displacement amplification as a solution for low copy number plasmid sequencing[J]. Front Microbiol, 2021, 12, 617487.
doi: 10.3389/fmicb.2021.617487 |
17 | RUAN Q Y , RUAN W D , LIN X Y , et al. Digital-WGS: automated, highly efficient whole-genome sequencing of single cells by digital microfluidics[J]. Sci Adv, 2020, 6 (50) |
18 |
LAURI A , LAZZARI G , GALLI C , et al. Assessment of MDA efficiency for genotyping using cloned embryo biopsies[J]. Genomics, 2013, 101 (1): 24- 29.
doi: 10.1016/j.ygeno.2012.09.002 |
19 |
SOBOL M S , KASTER A K . Back to basics: a simplified improvement to multiple displacement amplification for microbial single-cell genomics[J]. Int J Mol Sci, 2023, 24 (5): 4270.
doi: 10.3390/ijms24054270 |
20 | LU N , QIAO Y , LU Z H , et al. Chimera: the spoiler in multiple displacement amplification[J]. Comput Struct Biotechnol J, 2023, 21, 1688- 1696. |
21 | ARAKAWA K . Ultralow-input genome library preparation for nanopore sequencing with droplet MDA[M]. //ARAKAWA K.Nanopore Sequencing: Methods and Protocols.New York: Humana, 2023: 91- 100. |
22 | LUO C , FERNIE A R , YAN J B . Single-cell genomics and epigenomics: technologies and applications in plants[J]. Trends Plant Sci, 2020, 25 (10): 1030- 1040. |
23 | VOLOZONOKA L , MISKOVA A , GAILITE L . Whole genome amplification in preimplantation genetic testing in the era of massively parallel sequencing[J]. Int J Mol Sci, 2022, 23 (9): 4819. |
24 |
LI N , WANG L , WANG H , et al. The performance of whole genome amplification methods and next-generation sequencing for pre-implantation genetic diagnosis of chromosomal abnormalities[J]. J Genet Genomics, 2015, 42 (4): 151- 159.
doi: 10.1016/j.jgg.2015.03.001 |
25 | 徐晓丽, 吴凌娟, 鄢仁祥. 单细胞全基因组扩增技术与应用[J]. 生物化学与生物物理进展, 2019, 46 (4): 342- 352. |
XU X L , WU L J , YAN R X . Single cell whole genome amplification technology and application[J]. Progress in Biochemistry and Biophysics, 2019, 46 (4): 342- 352. | |
26 |
TRIPATHI J , ZHU L , NAYAK S , et al. Stochastic expression of invasion genes in Plasmodium falciparum schizonts[J]. Nat Commun, 2022, 13 (1): 3004.
doi: 10.1038/s41467-022-30605-z |
27 | LU S J , ZONG C H , FAN W , et al. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing[J]. Science, 2012, 338 (6114): 1627- 1630. |
28 | LIU N Q , WEN X J , OU Z H , et al. Case report: preimplantation genetic testing for X-linked alport syndrome caused by variation in the COL4A5 gene[J]. Front Pediatr, 2023, 11, 1177019. |
29 | DE BOURCY C F A , DE VLAMINCK I , KANBAR J N , et al. A quantitative comparison of single-cell whole genome amplification methods[J]. PLoS One, 2014, 9 (8): e105585. |
30 | LASKEN R S . Single-cell sequencing in its prime[J]. Nat Biotechnol, 2013, 31 (3): 211- 212. |
31 | ZONG C H , LU S J , CHAPMAN A R , et al. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell[J]. Science, 2012, 338 (6114): 1622- 1626. |
32 | MA J , GAO X , LI J Y , et al. Assessing the genetic background and selection signatures of Huaxi cattle using high-density SNP array[J]. Animals (Basel), 2021, 11 (12): 3469. |
33 | 张莹, 吴兆海, 卜登攀. 育肥期华西牛蛋白质与能量需要量研究[J]. 动物营养学报, 2022, 34 (12): 7886- 7894. |
ZHANG Y , WU Z H , BU D P . A study on protein and energy requirements of Huaxi cattle during fattening period[J]. Chinese Journal of Animal Nutrition, 2022, 34 (12): 7886- 7894. | |
34 | LIU L , LI Y H , LI S L , et al. Comparison of next-generation sequencing systems[J]. Biomed Res Int, 2012, 2012, 251364. |
35 | SIDORE A M , LAN F , LIM S W , et al. Enhanced sequencing coverage with digital droplet multiple displacement amplification[J]. Nucleic Acids Res, 2016, 44 (7): e66. |
36 | ZHOU Y , JIA E T , QIAO Y , et al. Low bias multiple displacement amplification with confinement effect based on agarose gel[J]. Anal Bioanal Chem, 2021, 413 (17): 4397- 4405. |
37 | LIU W Q , ZHANG H M , HU D , et al. The performance of MALBAC and MDA methods in the identification of concurrent mutations and aneuploidy screening to diagnose beta-thalassaemia disorders at the single- and multiple-cell levels[J]. J Clin Lab Anal, 2018, 32 (2): e22267. |
38 | LYU L P , ASGHAR U , FU J Y , et al. Comparative analysis of single-cell genome sequencing techniques toward the characterization of germline and somatic genomes in ciliated protists[J]. Eur J Protistol, 2023, 88, 125969. |
39 | ZHANG X Y , LIANG B , XU X Y , et al. The comparison of the performance of four whole genome amplification kits on ion proton platform in copy number variation detection[J]. Biosci Rep, 2017, 37 (4): BSR20170252. |
40 | SRISUTHAM S , SUWANNASIN K , MATHEMA V B , et al. Utility of Plasmodium falciparum DNA from rapid diagnostic test kits for molecular analysis and whole genome amplification[J]. Malar J, 2020, 19 (1): 193. |
41 | BIEZUNER T , RAZ O , AMIR S , et al. Comparison of seven single cell whole genome amplification commercial kits using targeted sequencing[J]. Sci Rep, 2021, 11 (1): 17171. |
42 | CASPER R F . PGT-A: houston, we have a problem[J]. J Assist Reprod Genet, 2023, 40 (10): 2325- 2332. |
[1] | LUAN Ya'nan, XU Danlei, GE Ming, TANG Zequn, ZHAO Xia, ZHANG Ruili. Study on the Involvement of Chicken Melanoma Differentiation-Associated Gene 5 Pathway in Bursa Injury of Chicken Induced by Infectious Bursal Disease Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(10): 2557-2566. |
[2] | LUAN Ya-nan,GE Ming,LI Guang-xing,XIE Wan-qiu,YANG Gui-jun,ZHANG Rui-li. The Expression and Location of chMDA5 in Chick Immune Organs [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(7): 1480-1487. |
[3] | WANG Cheng-cheng,GE Ming,LIU Chao-nan,LUAN Ya-nan,LI Guang-xing,ZHANG Rui-li. Dynamic Changing in the Expression of chMDA5 Signal Pathway Factors in Peripheral Blood Lymphocytes of Chicken Infected with IBDV [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2015, 46(5): 830-835. |
[4] | LIU Bao-jian, WANG Cun-lian, XU Ming-ju, WEI Dong, WANG Guo-hua, ZHANG Rui-hua, LIU Ying, XU Tong. Effect of Ginsenoside Rb1 on Oxygen Free Radicals in Acute Lung Injury of Mice Induced by H9N2 Swine Influenza Virus [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2013, 44(9): 1468-1474. |
[5] | LI Hua;ZENG Yongqing;WEI Shudong;CHEN Qimei;SONG Yiping;QIAN Yuan;DONG Bin;CUI Zhifeng . Changes of Superoxide Dismutase Activity and Malondialdehyde Level in PostmortemMuscle and Their Association with Meat Quality in Pigs [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2010, 41(3): 257-261. |
[6] | WANG Wen-kui;QI Yong-hua;CHENG Jia;LI Xue-lian;ZHOU Li-qing;GUO Na;ZHANG Ying;LIU Jin-ping;SONG Jin-xiang;BAI Jian. The Preventive Effect of LGZG Tang on Ascites Syndrome of Broiler [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2005, 36(11): 1215-1222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||