Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (11): 3856-3865.doi: 10.11843/j.issn.0366-6964.2022.11.012
• ANIMAL BIOTECHNOLOGY AND REPRODUCTION • Previous Articles Next Articles
WANG Tengfei, FENG Zhiqiang, SUN Yawen, ZHAO Shanjiang, HAO Haisheng, ZOU Huiying, DU Weihua, ZHAO Xueming, ZHU Huabin, PANG Yunwei*
Received:
2022-03-28
Online:
2022-11-23
Published:
2022-11-25
CLC Number:
WANG Tengfei, FENG Zhiqiang, SUN Yawen, ZHAO Shanjiang, HAO Haisheng, ZOU Huiying, DU Weihua, ZHAO Xueming, ZHU Huabin, PANG Yunwei. Effect of Altered O-GlcNAc Modification on in vitro Maturation of Bovine Oocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3856-3865.
[1] | KANG M K, HAN S J.Post-transcriptional and post-translational regulation during mouse oocyte maturation[J].BMB Rep, 2011, 44(3):147-157. |
[2] | WU Y, LI M, YANG M.Post-translational modifications in oocyte maturation and embryo development[J].Front Cell Dev Biol, 2021, 9:645318. |
[3] | YANG X Y, QIAN K.Protein O-GlcNAcylation:emerging mechanisms and functions[J].Nat Rev Mol Cell Biol, 2017, 18(7):452-465. |
[4] | HART G W, HOUSLEY M P, SLAWSON C.Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins[J].Nature, 2007, 446(7139):1017-1022. |
[5] | HART G W.Nutrient regulation of signaling and transcription[J].J Biol Chem, 2019, 294(7):2211-2231. |
[6] | SLAWSON C, DUNCAN F E.Sweet action:the dynamics of O-GlcNAcylation during meiosis in mouse oocytes[J].Mol Reprod Dev, 2015, 82(12):915. |
[7] | MIURA T, KUME M, KAWAMURA T, et al.O-GlcNAc on PKCζ inhibits the FGF4-PKCζ-MEK-ERK1/2 pathway via inhibition of PKCζ phosphorylation in mouse embryonic stem cells[J].Stem Cell Rep, 2018, 10(1):272-286. |
[8] | ZHOU L T, ROMAR R, PAVONE M E, et al.Disruption of O-GlcNAc homeostasis during mammalian oocyte meiotic maturation impacts fertilization[J].Mol Reprod Dev, 2019, 86(5):543-557. |
[9] | SUTTON-MCDOWALL M L, MITCHELL M, CETICA P, et al.Glucosamine supplementation during in vitro maturation inhibits subsequent embryo development:possible role of the hexosamine pathway as a regulator of developmental competence[J].Biol Reprod, 2006, 74(5):881-888. |
[10] | PANTALEON M, TAN H Y, KAFER G R, et al.Toxic effects of hyperglycemia are mediated by the hexosamine signaling pathway and O-linked glycosylation in early mouse embryos[J].Biol Reprod, 2010, 82(4):751-758. |
[11] | FRANK L A, SUTTON-MCDOWALL M L, RUSSELL D L, et al.Effect of varying glucose and glucosamine concentration in vitro on mouse oocyte maturation and developmental competence[J].Reprod Fertil Dev, 2013, 25(8):1095-1104. |
[12] | HART G W.Three decades of research on O-GlcNAcylation-a major nutrient sensor that regulates signaling, transcription and cellular metabolism[J].Front Endocrinol (Lausanne), 2014, 5:183. |
[13] | TAN E P, DUNCAN F E, SLAWSON C.The sweet side of the cell cycle[J].Biochem Soc Trans, 2017, 45(2):313-322. |
[14] | WEBSTER D M, TEO C F, SUN Y H, et al.O-GlcNAc modifications regulate cell survival and epiboly during zebrafish development[J].BMC Dev Biol, 2009, 9:28. |
[15] | O'DONNELL N, ZACHARA N E, HART G W, et al.Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability[J].Mol Cell Biol, 2004, 24(4):1680-1690. |
[16] | YANG Y R, SONG M, LEE H, et al.O-GlcNAcase is essential for embryonic development and maintenance of genomic stability[J].Aging Cell, 2012, 11(3):439-448. |
[17] | KEEMBIYEHETTY C.Disruption of O-GlcNAc cycling by deletion of O-GlcNAcase (Oga/Mgea5) changed gene expression pattern in mouse embryonic fibroblast (MEF) cells[J].Genom Data, 2015, 5:30-33. |
[18] | MUHA V, AUTHIER F, SZOKE-KOVACS Z, et al.Loss of O-GlcNAcase catalytic activity leads to defects in mouse embryogenesis[J].J Biol Chem, 2021, 296:100439. |
[19] | LEFEBVRE T, BAERT F, BODART J F, et al.Modulation of O-GlcNAc glycosylation during Xenopus oocyte maturation[J].J Cell Biochem, 2004, 93(5):999-1010. |
[20] | DEHENNAUT V, LEFEBVRE T, SELLIER C, et al.O-linked N-acetylglucosaminyltransferase inhibition prevents G2/M transition in Xenopus laevis oocytes[J].J Biol Chem, 2007, 282(17):12527-12536. |
[21] | DEHENNAUT V, HANOULLE X, BODART J F, et al.Microinjection of recombinant O-GlcNAc transferase potentiates Xenopus oocytes M-phase entry[J].Biochem Biophys Res Commun, 2008, 369(2):539-546. |
[22] | ZHU Y, HART G W.Targeting O-GlcNAcylation to develop novel therapeutics[J].Mol Aspects Med, 2021, 79:100885. |
[23] | FEHL C, HANOVER J A.Tools, tactics and objectives to interrogate cellular roles of O-GlcNAc in disease[J].Nat Chem Biol, 2022, 18(1):8-17. |
[24] | SLAWSON C, ZACHARA N E, VOSSELLER K, et al.Perturbations in O-linked β-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis[J].J Biol Chem, 2005, 280(38):32944-32956. |
[25] | ZHANG Z, TAN E P, VANDENHULL N J, et al.O-GlcNAcase expression is sensitive to changes in O-GlcNAc homeostasis[J].Front Endocrinol (Lausanne), 2014, 5:206. |
[26] | LIN C H, LIAO C C, CHEN M Y, et al.Feedback regulation of O-GlcNAc transferase through translation control to maintain intracellular O-GlcNAc homeostasis[J].Int J Mol Sci, 2021, 22(7):3463. |
[27] | WEISS M, ANDERLUH M, GOBEC M.Inhibition of O-GlcNAc transferase alters the differentiation and maturation process of human monocyte derived dendritic cells[J].Cells, 2021, 10(12):3312. |
[28] | MA J F, WU C, HART G W.Analytical and biochemical perspectives of protein O-GlcNAcylation[J].Chem Rev, 2021, 121(3):1513-1581. |
[29] | ZHANG H L, JIA Y W, COOPER J J, et al.Common variants in glutamine:fructose-6-phosphate amidotransferase 2 (GFPT2) gene are associated with type 2 diabetes, diabetic nephropathy, and increased GFPT2 mRNA levels[J].J Clin Endocrinol Metab, 2004, 89(2):748-755. |
[30] | CHIARADONNA F, RICCIARDIELLO F, PALORINI R.The nutrient-sensing hexosamine biosynthetic pathway as the Hub of cancer metabolic rewiring[J].Cells, 2018, 7(6):53. |
[31] | AKELLA N M, CIRAKU L, REGINATO M J.Fueling the fire:emerging role of the hexosamine biosynthetic pathway in cancer[J].BMC Biol, 2019, 17(1):52. |
[32] | CHATHAM J C, YOUNG M E, ZHANG J H.Role of O-linked N-acetylglucosamine (O-GlcNAc) modification of proteins in diabetic cardiovascular complications[J].Curr Opin Pharmacol, 2021, 57:1-12. |
[33] | GHOSH S K, BOND M R, LOVE D C, et al.Disruption of O-GlcNAc cycling in C.elegans perturbs nucleotide sugar pools and complex glycans[J].Front Endocrinol (Lausanne), 2014, 5:197. |
[34] | JIANG X L, PANG Y W, ZHAO S J, et al.Thioredoxin-interacting protein regulates glucose metabolism and improves the intracellular redox state in bovine oocytes during in vitro maturation[J].Am J Physiol Endocrinol Metab, 2020, 318(3):E405-E416. |
[35] | PERRONE L, DEVI T S, HOSOYA K I, et al.Inhibition of TXNIP expression in vivo blocks early pathologies of diabetic retinopathy[J].Cell Death Dis, 2010, 1(8):e65. |
[36] | STOLTZMAN C A, KAADIGE M R, PETERSON C W, et al.Mondoa senses non-glucose sugars:regulation of thioredoxin-interacting protein (TXNIP) and the hexose transport curb[J].J Biol Chem, 2011, 286(44):38027-38034. |
[37] | FILHOULAUD G, BENHAMED F, PAGESY P, et al.O-GlcNAcylation links TxNIP to inflammasome activation in pancreatic β cells[J].Front Endocrinol (Lausanne), 2019, 10:291. |
[1] | LI Jiannan, YUAN Liming, HUA Jinlian. Progress on the Application of CD46 in Breeding of Livestock for Disease Resistance [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1866-1874. |
[2] | LI Wanjun, XU Jiehuan, HE Mengxian, KONG Yuting, ZHANG Defu, DAI Jianjun. Cytochalasin B Alleviates the Migration Disorder of Cortical Particle Caused by Vitrification in Porcine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1999-2010. |
[3] | HUANG Jin, LI Siyuan, MAO Li, CAI Xuhang, XIE Lingling, WANG Fu, ZHOU Hua, LI Jizong, LI Bin. Eukaryotic Expression of Bovine Coronavirus S1 Protein and Establishment and Application of Indirect ELISA [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2050-2060. |
[4] | GUO Xuelian, LI Yongqin, LI Ruiqian, LI Hao, JIN Shuangyuan, WANG Xueyan, DU Jiawei, XU Lihua. Biological Functions of Bovine Respiratory Syncytial Virus G and F Proteins [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1478-1487. |
[5] | LAN Xinrui, ZHAO Baobao, ZHANG Bihan, LIN Xiaoyu, MA Huiming, WANG Yongsheng. Effects of β-sitosterol on Porcine Oocyte Maturation and Embryonic Development in Vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1629-1637. |
[6] | LI Yujun, HE Honghong, YANG Lixue, YANG Xiaogeng, LI Jian, ZHANG Huizhu. Advances in Regulation of Mammalian Embryonic Development by Mitochondrial Autophagy [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 905-912. |
[7] | LIU Qiang, NIU Xiaoxia, FANG Min, LIU Yanling, GAO Hui, CHEN Jixiang, JIAHUA Cairang, ZHANG Sinong, LI Yong. Research Progress of Bovine Coronavirus Spike Protein [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 944-956. |
[8] | HU Qiaoyan, ZHAI Xiangqin, LI Yidan, HAN Jiale, LEI Chuzhao, DANG Ruihua. Effects of bta-miR-101 on Proliferation, Apoptosis and Secretion of Bovine Testicular Sertoli Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1040-1051. |
[9] | KANG Fangyuan, LIU Zhentao, WU Kuixian, NI Han, ZHONG Kai, LI Heping, YANG Guoyu, HAN Liqiang. Regulation of Lipophagy on the Size of Lipid Droplets in Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1095-1101. |
[10] | YI Pengfei, SUN Lei, MA Yanan, MA Xuelian, LI Na, SUN Yawei, ZHONG Qi, YAO Gang. Comparative on Changes in Nasal Microbiota between Healthy Angus Calves and IBRV Infected Calves [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1147-1158. |
[11] | YU Qisheng, ZHU Qing, ZHOU Qun, SONG Xin, ZHANG Jiaqi, CHEN Taoyun, XU Lin, ZHANG Chaohui, ZHANG Bin. Expression of BCoV Spike Protein by Baculovirus Expression System and Its Immunogenicity in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 640-648. |
[12] | LI Siyuan, FU Xincheng, YUAN Xuesong, MAO Li, CAI Xuhang, SUN Xinru, HUANG Jin, XIE Lingling, WANG Fu, ZHOU Hua, ZHANG Qi, LI Jizong, LI Bin. Detection of Bovine Viral Diarrhea Pathogens and Evolution Analysis of Bovine Coronavirus in Langfang, Hebei [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 649-659. |
[13] | ZHUANG Cuicui, HAN Bo. Mechanism of Mitochondrial Damage in Bovine Mammary Epithelial Cells and Mouse Mammary Gland Infected with Escherichia coli Isolated from Bovine Mastitis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 822-833. |
[14] | MIAO Shu, AN Jishan, WANG Zuo, XIAO Dingfu, LAN Xinyi, LIU Lei, SHEN Weijun, WAN Fachun. Leucine Promotes the Proliferation of Bovine Myoblasts through PI3K-AKT Signaling Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 142-152. |
[15] | LI Huihui, DONG Keer, LIU Xinbo, ZHANG Chunxiao, MA Chao, CHEN Liping, ZHONG Qi, YAO Gang, MA Xuelian. Establishment and Application of Rapid Detection Method for Bovine Norovirus and Bovine Rotavirus Dual RAA-LFD [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 406-412. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||