[1] 朱昱蓉, 刘荣华. 肺炎克雷伯菌、类肺炎克雷伯菌和变栖克雷伯菌的研究进展[J].中国感染控制杂志, 2023, 22(8):983-989. ZHU Y R, LIU R H. Advance in Klebsiella pneumoniae, Klebsiella quasipneumoniae and Klebsiella variicola[J].Chinese Journal of Infection Control, 2023, 22(8):983-989.(in Chinese) [2] 钟一鸣, 罗昕怡, 李艳明, 等. 变栖克雷伯菌感染患者的临床特征[J]. 中国感染控制杂志, 2023,22(1):38-43. ZHONG Y M, LUO X Y, LI Y M, et al. Clinical characteristics of patients with Klebsiella variicola infection[J].Chinese Journal of Infection Control,2023,22(1):38-43.(in Chinese) [3] JEKL V, PISKOVSKA A, DRNKOVA I, et al. Case Report: Spontaneous appendicitis with suspected involvement of Klebsiella variicola in two pet rabbits[J]. Front Vet Sci, 2021,8:779517. [4] DANIS-WLODARCZYK K, DBROWSKA K, ABEDON S T. Phage Therapy: The pharmacology of antibacterial viruses[J]. Curr Issues Mol Biol, 2021,40:81-164. [5] FEINER R, ARGOV T, RABINOVICH L, et al. A new perspective on lysogeny: prophages as active regulatory switches of bacteria [J]. Nat Rev Microbiol, 2015,13(10):641-650. [6] CLARK J R, MARCH J B. Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials [J]. Trends Biotechnol, 2006,24(5): 212-218. [7] MCCALLIN S, SACHER J C, ZHENG J, et al. Current state of compassionate phage therapy [J]. Viruses 2019, 11(4):343. [8] STRATHDEE S A, HATFULL G F, MUTALIK V K, et al. Phage therapy: from biological mechanisms to future directions[J]. Cell, 2023,186(1):17-31. [9] LU B, YAO X, HAN G, et al. Isolation of Klebsiella pneumoniae phage vB_KpnS_MK54 and pathological assessment of endolysin in the treatment of pneumonia mice model[J]. Front Microbiol, 2022, 13: 854908. [10] ASIF M, ALVI I A, WAQAS M, et al. A K-17serotype specific Klebsiella phage JKP2 with biofilm reduction potential[J]. Vet Res, 2023, 329:199107. [11] 沈秀平, 张释丹, 刘源平, 等. 噬菌体制剂雾化治疗多重耐药肺炎克雷伯菌感染小鼠的效果评价[J]. 中国生物工程杂志, 2025,45(Z1):1-12. SHEN X P, ZHANG S D, LIU Y P, et al. Evaluation of therapeutic efficacy of multi-drug resistant Klebsiella pneumoniae in a mouse model by inhalation of nebulized bacteriophage[J]. China Biotechnology, 2025,45(Z1):1-12.(in Chinese) [12] LIM K B, BALOLONG M P, KIM S H, et al. Isolation and characterization of a broad spectrum bacteriocin from bacillus amyloliquefaciens RX7[J]. Biomed Res Int, 2016, 8521476. [13] 朱一诺. 两株鲍曼不动杆菌噬菌体的分离鉴定及生物学特性和基因组学的分析[D]. 北京:北京化工大学, 2022. ZHU Y N. Isolation and identification of Acinetobacter baumannii phages and their biological characteristics and genomics analysis[D].Beijing: Beijing University of Chemical Technology, 2022.(in Chinese) [14] 侯忠余, 李传友, 朱成林, 等. 1株金黄色葡萄球菌烈性噬菌体的生物学特性及其裂解效果[J]. 食品科学, 2022, 43(8):113-120. HOU Z Y, LI C Y, ZHU C L, et al. Biological characteristics and lytic activity of a virulent Staphylococcus aureus phage[J]. Food Science, 2022, 43(8):113-120.(in Chinese) [15] WIOLETA W M, JOANNA B, MALGORZATA L B, et al. Lysis of bacterial cells in the process of bacteriophage release - canonical and newly discovered mechanisms[J]. Postepy Hig Med Dosw, 2015, 69(1):114-126. [16] ECKSTEIN S, STENDER J, MZOUGHI S, et al. Isolation and characterization of lytic phage TUN1 specific for Klebsiella pneumoniae K64 clinical isolates from Tunisia[J]. BMC Microbiology, 2021,21(1):186. [17] SEEMANN T. Prokka: rapid prokaryotic genome annotation. Bioinformatics[J]. Bioinformatics, 2014;30(14):2068-2069. [18] CANTALAPIEDRA C P, HERNÁNDEZ-PLAZA A, LETUNIC I, et al. eggNOGmapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale[J]. Mol Biol Evol, 2021, 38(12):5825-5829. [19] LIU B, ZHENG D, ZHOU S, et al. VFDB 2022: a general classification scheme for bacterial virulence factors[J]. Nucleic Acids Res, 2022, 50(D1):D912-D917. [20] BORTOLAIA V, KAAS R S, RUPPE E, et al. ResFinder 4.0 for predictions of phenotypes from genotypes[J]. J Antimicrob Chemother, 2020, 75(12):3491-3500. [21] GRANT JR, STOTHARD P. The CGView Server: a comparative genomics tool for circular genomes[J]. Nucleic Acids Res, 2008, 36(Web Server issue):W181-4. [22] DRULIS Z, MACKIEWICZ P, KESIK A, et al. Isolation and characterization of KP34—A novel φKMV-like bacteriophage for Klebsiella pneumoniae[J]. Appl Microbiol Biotechnol, 2011, 90, 1333-1345. [23] SAMIR S. Molecular machinery of the triad holin, endolysin, and spanin: key players orchestrating bacteriophage-induced cell lysis and their therapeutic applications[J]. Protein Pept Lett, 2024, 31(2):85-96. [24] KONGARI R, RAJAURE M, CAHILL J, et al. Phage spanins: diversity, topological dynamics and gene convergence[J]. BMC Bioinformatics, 2018;19(1):326. [25] WINTACHAI P, SURACHAT K, SINGKHAMANAN K. Isolation and characterization of a novel autographiviridae phage and its combined effect with tigecycline in controlling multidrug-resistant Acinetobacter baumannii-associated skin and soft tissue infections[J]. Viruses, 2022, 14(2):194. [26] 姜姗杉, 赵日虹, 邱 操, 等. 肺炎克雷伯菌噬菌体vB_KpnP_71Y的生物学特性及基因组分析[J]. 中国兽医学报, 2024, 44(11):2400-2408. JIANG S S, ZHAO R H, QIU C, et al. Biological characteristics and genomic analysis of phage vB_KpnP_71Y of Klebsiella pneumoniae[J]. Chinese Journal of Veterinary Science, 2024, 44(11):2400-2408.(in Chinese) [27] 金 晓, 钟佑宏, 范 旭, 等. 1株肺炎克雷伯菌噬菌体的分离及初步研究[J]. 医学动物防制, 2024, 40(11):1136-1140. JIN X, ZHONG Y H, FAN X, et al. Isolation and preliminary study of one strain of Klebsiella pneumoniae phage[J]. Journal of Medical Pest Control, 2024, 40(11):1136-1140.(in Chinese) [28] 张 改, 靳 静, 王山梅, 等. 一株新型肺炎克雷伯菌裂解性噬菌体Pdz533的生物学特性及全基因组分析[J]. 中国病原生物学杂志, 2023,18(11):1303-1310. ZHANG G, JIN J, WANG S M, et al. Biological characteristics and complete genome analysis of a novel Klebsiella pneumoniae lytic phage Pdz533[J]. Journal of Pathogen Biology, 2023,18(11):1303-1310.(in Chinese) [29] 孙 续, 中拉毛草, 杨 峰, 等. 肺炎克雷伯菌噬菌体的分离鉴定及vB_KpnS_Yuri1的生物学特性研究[J]. 中兽医医药杂志, 2024, 43(3):1-9,105. SUN X, ZHONG L M C, YANG F, et al. Isolation and identification of phage of Klebsiella pneumoniae and study on biological characteristics of vB_KpnS_Yuri1[J]. Journal of Traditional Chinese Veterinary Medicine, 2024, 43(3):1-9,105.(in Chinese) [30] 侯宫明珠, 周海琴, 余星雨, 等. 1株羊源多重耐药肺炎克雷伯菌噬菌体的生物学特性及全基因组分析[J]. 中国畜牧兽医, 2024, 51(5):2047-2057. HOU G M Z, ZHOU H Q, YU X Y, et al. Biological characteristics and whole genome analysis of a multidrug-resistant Klebsiella pneumoniae phage of sheep origin[J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(5):2047-2057.(in Chinese) [31] XU J, LI X, KANG G, et al. Isolation and characterization of AbTJ, an Acinetobacter baumannii phage, and functional identification of its receptor-binding modules[J]. Viruses, 2020, 12(2): 205. [32] POPOVA A.V, SHNEIDER M, ARBATSKY N P, et al. Specific interaction of novel friunavirus phages encoding tailspike depolymerases with corresponding Acinetobacter baumannii capsular types[J]. J Virol, 2020, 95(5): e01714-20. [33] BUJAK K, DECEWICZ P, KITOWICZ M, et al. Characterization of three novel virulent aeromonas phages provides insights into the diversity of the Autographiviridae family[J]. Viruses, 2022, 14(5):1016. [34] MOROZOVA V, KOZLOVA Y, JDEED G, et al. A novel Aeromonas popoffii phage AerP_220 proposed to be a member of a new tolavirus genus in the Autographiviridae family.[J] Viruses, 2022, 14(12):2733. [35] LAVIGNE R, SETO D, MAHADEVAN P, et al. Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools[J]. Res Microbiol, 2008, 159(5):406-414. [36] CAHILL J, YOUNG R. Phage lysis: multiple genes for multiple barriers[J]. Adv Virus Res, 2019, 103:33-70. [37] BERRY J, RAJAURE M, PANG T, et al. The spanin complex is essential for lambda lysis[J]. J Bacteriol, 2012, 194(20):5667-74. [38] CHEN X, LIU M, ZHANG P, et al. Phage-derived depolymerase as an antibiotic adjuvant against multidrug-resistant Acinetobacter baumannii [J]. Front Microbiol, 2022, 13:845500. [39] DION M, OECHSLIN F, MOINEAU S. Phage diversity, genomics and phylogeny [J]. Nat Rev Microbiol, 2020,18(3):125-138. [40] KRESKEN M, BECKER K, SEIFERT H, et al. Resistance trends and in vitro activity of tigecycline and 17 other antimicrobial agents against Gram-positive and Gram-negative organisms, including multidrug-resistant pathogens, in Germany[J]. Eur J Clin Microbiol Infect Dis, 2011, 30(9):1095-1103. [41] CHAN B K, ABEDON S T. Bacteriophages and their enzymes in biofilm control[J]. Curr Pharm Des, 2015, 21(1):85-99. [42] ALVES D R, GAUDION A, BEAN J E, et al. Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation[J]. Appl Environ Microbiol, 2014, 80(21):6694-6703. [43] LUNGREN M P, CHRISTENSEN D, KANKOTIA R, et al. Bacteriophage K for reduction of biofilm on central venous catheter material[J]. Bacteriophage, 2013, 3(4): e26825. [44] LU Y, FANG C, XXIANG L, et al. Characterization and therapeutic potential of three depolymerases against K54 capsular-type Klebsiella pneumoniae[J]. Microorganisms. 2025,13(7):1544. [45] RYAN E, ALKAWAREEK M, DONNELLY R, et al Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro [J]. FEMS Immunol Med Microbiol, 2012, 65: 395-398. [46] POPOVA A., LAVYSH D, KLIMUK E, et al. Novel fri1-like viruses infecting Acinetobacter baumannii-vB_AbaP_AS11 and vB_AbaP_AS12-characterization, comparative genomic analysis, and host-recognition strategy[J]. Viruses, 2017, 9(7):188. [47] ANDO H, LEMIRE S, PIRES, D, et al. Engineering modular viral scaffolds for targeted bacterial population editing[J]. Cell Syst, 2015, 1(3):187-196. |