[1] LIEBER M R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway [J]. Annu Rev Biochem, 2010, 79: 181-211. [2] CHANG H H Y, PANNUNZIO N R, ADACHI N, et al. Non-homologous DNA end joining and alternative pathways to double-strand break repair [J]. Nat Rev Mol Cell Biol, 2017, 18(8): 495-506. [3] SUNG P, KLEIN H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions [J]. Nat Rev Mol Cell Biol, 2006, 7(10): 739-750. [4] YAN W X, HUNNEWELL P, ALFONSE L E, et al. Functionally diverse type V CRISPR-Cas systems [J]. Science, 2019, 363(6422): 88-91. [5] HARRINGTON L B, MA E, CHEN J S, et al. A scoutRNA is required for some type V CRISPR-Cas systems [J]. Mol Cell, 2020, 79(3): 416-424. e415. [6] RAN F A, HSU P D, LIN C Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity [J]. Cell, 2013, 154(6): 1380-1389. [7] MAKAROVA K S, WOLF Y I, IRANZO J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants [J]. Nat Rev Microbiol, 2020, 18(2): 67-83. [8] ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system [J]. Cell, 2015, 163(3): 759-771. [9] GILLMORE J D, GANE E, TAUBEL J, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis [J]. N Engl J Med, 2021, 385(6): 493-502. [10] 陈秋崇, 李尚朴, 苗洱钰, 等. HDACi和RS-1提高CRISPR/Cas12i介导的HDR编辑效率 [J]. 农业生物技术学报, 2024, 32(10): 2306-2323. CHEN Q C, LI S P, MIAO E Y, et al. HDACi and RS-1 enhance CRISPR/Cas12i-mediated HDR editing efficiency [J]. Journal of Agricultural Biotechnology, 2024, 32(10): 2306-2323. (in Chinese) [11] RUPP R, SENIN P, SARRY J, et al. A point mutation in suppressor of cytokine signalling 2 (Socs2) increases the susceptibility to inflammation of the mammary gland while associated with higher body weight and size and higher milk production in a sheep model [J]. PLOS Genetics, 2015, 11(12): e1005629. [12] INAGAKI-OHARA K, MAYUZUMI H, KATO S, et al. Enhancement of leptin receptor signaling by SOCS3 deficiency induces development of gastric tumors in mice [J]. Oncogene, 2014, 33(1): 74-84. [13] LETELLIER E, HAAN S. SOCS2: physiological and pathological functions [J]. Front Biosci (Elite Ed), 2016, 8(1): 189-204. [14] DOBIE R, MACRAE V E, PASS C, et al. Suppressor of cytokine signaling 2 (Socs2) deletion protects bone health of mice with DSS-induced inflammatory bowel disease [J]. Dis Model Mech, 2018, 11(1):dmm028456. [15] BUCKINGHAM K J, MCMILLIN M J, BRASSIL M M, et al. Multiple mutant T alleles cause haploinsufficiency of Brachyury and short tails in Manx cats [J]. Mammalian Genome, 2013, 24(9): 400-408. [16] KROMIK A, ULRICH R, KUSENDA M, et al. The mammalian cervical vertebrae blueprint depends on the T (brachyury) gene [J]. Genetics, 2015, 199(3): 873-883. [17] JOULIA-EKAZA D, CABELLO G. The myostatin gene: physiology and pharmacological relevance [J]. Curr Opin Pharmacol, 2007, 7(3): 310-315. [18] MCPHERRON A C, LAWLER A M, LEE S J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member [J]. Nature, 1997, 387(6628): 83-90. [19] WELLE S, BHATT K, PINKERT C A, et al. Muscle growth after postdevelopmental myostatin gene knockout [J]. Am J Physiol Endocrinol Metab, 2007, 292(4): E985-991. [20] MEGENEY L A, RUDNICKI M A. Determination versus differentiation and the MyoD family of transcription factors [J]. Biochem Cell Biol, 1995, 73(9-10): 723-732. [21] ZHANG Z, XU F, ZHANG Y, et al. Cloning and expression of MyoG gene from Hu sheep and identification of its myogenic specificity [J]. Mol Biol Rep, 2014, 41(2): 1003-1013. [22] 刘宏祥, 徐文娟, 朱春红, 等. 鸭胚胎发育中后期胸肌发育阻滞的RNA-seq分析 [J]. 中国农业科学, 2018, 51(22): 4373-4386. LIU H X, XU W J, ZHU C H, et al. RNA-seq analysis on development arrest of duck pectoralis muscle during semi-late embryonic period[J]. Scientia Agricultura Sinica, 2018, 51(22): 4373-4386. (in Chinese) [23] AASE-REMEDIOS M E, COLL-LLADÓ C, FERRIER D E K. More than one-to-four via 2R: evidence of an independent amphioxus expansion and two-gene ancestral vertebrate state for MyoD-related myogenic regulatory factors (MRFs) [J]. Mol Biol Evol, 2020, 37(10): 2966-2982. [24] 汤展毅, 严云勤, 高学军, 等. 牛myf6基因克隆及在成纤维细胞中的表达 [J]. 东北农业大学学报, 2010, 41(11): 77-82,后插72. TANG Z Y, YAN Y Q, GAO X J, et al. Cloning of bovine myf6 gene and expression gene in fibroblasts [J]. Journal of Northeast Agricultural University, 2010, 41(11): 77-82, after insert 72. (in Chinese) [25] AIELLO D, PATEL K, LASAGNA E. The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals [J]. Anim Genet, 2018, 49(6): 505-519. [26] MARUYAMA T, DOUGAN S K, TRUTTMANN M C, et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining [J]. Nat Biotechnol, 2015, 33(5): 538-542. [27] JANG D E, LEE J Y, LEE J H, et al. Multiple sgRNAs with overlapping sequences enhance CRISPR/Cas9-mediated knock-in efficiency [J]. Exp Mol Med, 2018, 50(4): 1-9. [28] RAHMANI B, KHEIRANDISH M H, GHANBARI S, et al. Targeting DNA repair pathways with B02 and Nocodazole small molecules to improve CRIS-PITCh mediated cassette integration in CHO-K1 cells [J]. Sci Rep, 2023, 13(1): 3116. [29] SETO E, YOSHIDA M. Erasers of histone acetylation: the histone deacetylase enzymes [J]. Cold Spring Harb Perspect Biol, 2014, 6(4): a018713. [30] ZHANG J P, YANG Z X, ZHANG F, et al. HDAC inhibitors improve CRISPR-mediated HDR editing efficiency in iPSCs [J]. Sci China Life Sci, 2021, 64(9): 1449-1462. [31] 黄兰兰, 石国庆, 白 洁. 绵羊胚胎成纤维细胞的体外培养 [J]. 黑龙江动物繁殖, 2006, (2): 4-5. HUANG L L, SHI G Q, BAI J. In vitro culture of sheep embryonic fibroblasts [J]. Heilongjiang Journal of Animal Reproduction, 2006, (2): 4-5. (in Chinese) [32] MCGAW C, GARRITY A J, MUNOZ G Z, et al. Engineered Cas12i2 is a versatile high-efficiency platform for therapeutic genome editing [J]. Nat Commun, 2022, 13(1): 2833. [33] 谢洪涛, 段志强. 利用Cas12i在大豆中进行基因编辑的方法, CN116218896A [P/OL]. XIE H T, DUAN Z Q. Method for gene editing in soybeans using Cas12i, CN116218896A [P/OL]. (in Chinese) [34] 姚方瑶. 绵羊CRISPR/Cas12i基因编辑技术体系的优化与应用 [D]. 杨凌:西北农林科技大学, 2024. YAO F Y. Optimisation and Application of the CRISPR/Cas12i Gene Editing Technology System for Sheep [D]. Yangling: Northwest A&F University, 2024.(in Chinese) [35] MANJUNATH M, CHOUDHARY B, RAGHAVAN S C. SCR7, a potent cancer therapeutic agent and a biochemical inhibitor of nonhomologous DNA end-joining [J]. Cancer Rep (Hoboken), 2021, 4(3): e1341. [36] VARTAK S V, RAGHAVAN S C. Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing [J]. Febs J, 2015, 282(22): 4289-4294. [37] LIU B, CHEN S, ROSE A, et al. Inhibition of histone deacetylase 1 (HDAC1) and HDAC2 enhances CRISPR/Cas9 genome editing [J]. Nucleic Acids Res, 2020, 48(2): 517-532. [38] JOGLEKAR A V, STEIN L, HO M, et al. Dissecting the mechanism of histone deacetylase inhibitors to enhance the activity of zinc finger nucleases delivered by integrase-defective lentiviral vectors [J]. Hum Gene Ther, 2014, 25(7): 599-608. [39] YOON S, EOM G H. HDAC and HDAC inhibitor: From cancer to cardiovascular diseases [J]. Chonnam Med J, 2016, 52(1): 1-11. [40] KUSCU C, ARSLAN S, SINGH R, et al. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease [J]. Nat Biotechnol, 2014, 32(7): 677-683. [41] CHARI R, MALI P, MOOSBURNER M, et al. Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach [J]. Nat Methods, 2015, 12(9): 823-826. [42] MORENO-MATEOS M A, VEJNAR C E, BEAUDOIN J D, et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo [J]. Nat Methods, 2015, 12(10): 982-988. [43] ORTHWEIN A, NOORDERMEER S M, WILSON M D, et al. RETRACTED ARTICLE: A mechanism for the suppression of homologous recombination in G1 cells [J]. Nature, 2015, 528(7582): 422-426. [44] CHAPMAN J R, TAYLOR MARTIN R G, BOULTON SIMON J. Playing the end game: DNA double-strand break repair pathway choice [J]. Molecular Cell, 2012, 47(4): 497-510. [45] RICHARDSON C D, RAY G J, DEWITT M A, et al. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA [J]. Nat Biotechnol, 2016, 34(3): 339-344. [46] YANG L, GUELL M, BYRNE S, et al. Optimization of scarless human stem cell genome editing [J]. Nucleic Acids Res, 2013, 41(19): 9049-9061. |