1 |
SANTOS A S , LIMA D , ABAD A , et al. Antimicrobial resistance profile of non-aureus Staphylococci isolates from buffalo, goat and sheep mastitis in the Northeast region of Brazil[J]. J Dairy Res, 2020, 87 (3): 290- 294.
doi: 10.1017/S0022029920000771
|
2 |
WANG C , YANG Y , GAO N , et al. L-Threonine upregulates the expression of β-defensins by activating the NF-κB signaling pathway and suppressing SIRT1 expression in porcine intestinal epithelial cells[J]. Food Funct, 2021, 12 (13): 5821- 5836.
doi: 10.1039/D1FO00269D
|
3 |
安清聪, 徐娜娜, 张春勇, 等. 不同水平乳铁蛋白对滇撒配套系仔猪生产性能、小肠形态学和机体抗病能力的影响[J]. 畜牧兽医学报, 2015, 46 (12): 2206- 2217.
doi: 10.11843/j.issn.0366-6964.2015.12.012
|
|
AN Q C , XU N N , ZHANG C Y , et al. The effect of different levels of lactoferrin on the growth performance, small intestinal morphology and body resistance to disease of diansa weaning piglets[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46 (12): 2206- 2217.
doi: 10.11843/j.issn.0366-6964.2015.12.012
|
4 |
朱芳, 李璐璐, 赵红奕, 等. 唾液乳杆菌对奶山羊隐性乳房炎的治疗效果分析[J]. 畜牧兽医学报, 2024, 55 (12): 5706- 5715.
doi: 10.11843/j.issn.0366-6964.2024.12.033
|
|
ZHU F , LI L L , ZHAO H Y , et al. Treatment effects of Lactobacillus salivarius on subclinical mastitis in dairy goats[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (12): 5706- 5715.
doi: 10.11843/j.issn.0366-6964.2024.12.033
|
5 |
孟璐, 胡海燕, 董蕾, 等. 基于SourceTracker分析牧场环境对乳房炎乳菌群的影响[J]. 畜牧兽医学报, 2023, 54 (9): 3872- 3883.
doi: 10.11843/j.issn.0366-6964.2023.09.026
|
|
MENG L , HU H Y , DONG L , et al. Influence of dairy farm environment on mastitis milk microbiota via sourcetracker[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (9): 3872- 3883.
doi: 10.11843/j.issn.0366-6964.2023.09.026
|
6 |
GABLI Z , DJERROU Z , GABLI A E , et al. Prevalence of mastitis in dairy goat farms in Eastern Algeria[J]. Vet World, 2019, 12 (10): 1563- 1572.
doi: 10.14202/vetworld.2019.1563-1572
|
7 |
KUMAR N , BHAGWAT P , SINGH S , et al. A review on the diversity of antimicrobial peptides and genome mining strategies for their prediction[J]. Biochimie, 2024, 27, S0300- 9084(24)00157-3.
|
8 |
KASEKE T B , CHIKWAMBI Z , GOMO C , et al. Antibacterial activity of medicinal plants on the management of mastitis in dairy cows: A systematic review[J]. Vet Med Sci, 2023, 9 (6): 2800- 2819.
doi: 10.1002/vms3.1268
|
9 |
TAN Z , DENG J , YE Q , et al. The antibacterial activity of natural-derived flavonoids[J]. Curr Top Med Chem, 2022, 22 (12): 1009- 1019.
doi: 10.2174/1568026622666220221110506
|
10 |
LIU H , WANG L , YAO C . Optimization of antibacterial activity and biosafety through ultrashort peptide/cyclodextrin inclusion complexes[J]. Int J Mol Sci, 2023, 24 (19): 14801.
doi: 10.3390/ijms241914801
|
11 |
SANG Y , BLECHA F . Porcine host defense peptides: expanding repertoire and functions[J]. Dev Comp Immunol, 2009, 33 (3): 334- 343.
|
12 |
ELAHI S , BUCHANAN R M , ATTAH-POKU S , et al. The host defense peptide beta-defensin 1 confers protection against Bordetella pertussis in newborn piglets[J]. Infect Immun, 2006, 74 (4): 2338- 2352.
|
13 |
WAN M L , LING K H , WANG M F , et al. Green tea polyphenol epigallocatechin-3-gallate improves epithelial barrier function by inducing the production of antimicrobial peptide pBD-1 and pBD-2 in monolayers of porcine intestinal epithelial IPEC-J2 cells[J]. Mol Nutr Food Res, 2016, 60 (5): 1048- 1058.
|
14 |
SHEIBANI N . Prokaryotic gene fusion expression systems and their use in structural and functional studies of proteins[J]. Prep Biochem Biotechnol, 1999, 29 (1): 77- 90.
|
15 |
郭海勇, 袁洪兴, 王云霄, 等. 重组猪β-防御素1对大肠杆菌的抑制作用[J]. 畜牧兽医学报, 2017, 48 (7): 1342- 1348.
doi: 10.11843/j.issn.0366-6964.2017.07.019
|
|
GUO H Y , YUAN H X , WANG Y X , et al. Inhibitory effects of recombinant porcine beta-defensin 1 on Escherichia coli[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48 (7): 1342- 1348.
doi: 10.11843/j.issn.0366-6964.2017.07.019
|
16 |
HUANG H J , GAO Q S , QIAN Y G , et al. Recombinant PBD-1 (porcine beta-defensin 1) expressed in the milk by transplanting transgenic mES-like-derived cells into mouse mammary gland[J]. Cell Biol Int, 2010, 34 (10): 1033- 1040.
|
17 |
全锁配. 猪β-防御素-1的原核表达及其微胶囊的制备[D]. 合肥: 安徽农业大学, 2020.
|
|
QUAN S P. Prokaryotic expression and preparation of microcapsules of porcine β-defensin-1[D]. Hefei: Anhui Agricultural University, 2020. (in Chinese)
|
18 |
朱慧君. 猪β防御素-1与溶菌酶在黑曲霉中的表达和抗菌活性分析[D]. 哈尔滨: 东北农业大学, 2023.
|
|
ZHU H J. Expression and antibacterial activity analysis of Porcine β-defensin-1 and lysozyme in Aspergillus niger[D]. Harbin: Northeast Agricultural University, 2023. (in Chinese)
|
19 |
JANG J, HUR H G, SADOWSKY M J, et al. Environmental Escherichia coli: ecology and public health implications-a review. J Appl Microbiol, 2017, 123(3): 570-581.
|
20 |
ZHENG X , YANG N , MAO R , et al. Pharmacokinetics and pharmacodynamics of antibacterial peptide NZX in Staphylococcus aureus mastitis mouse model[J]. Appl Microbiol Biotechnol, 2024, 108 (1): 260.
|
21 |
TAO Q , LU Y , LIU Q , et al. Antibacterial activity of the antimicrobial peptide PMAP-36 in combination with tetracycline against porcine extraintestinal pathogenic Escherichia coli in vitro and in vivo[J]. Vet Res, 2024, 55 (1): 35.
|
22 |
ZHU Y , HAO W , WANG X , et al. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections[J]. Med Res Rev, 2022, 42 (4): 1377- 1422.
|
23 |
赵晶晶, 李晓凤, 刘保国, 等. 两种方法测试抗菌肽与抗生素的联合抑菌效果[J]. 现代农业科技, 2024, 4, 139-142, 155.
|
|
ZHAO J J , LI X F , LIU B G , et al. Two methods for testing combined antibacterial effects of antimicrobial peptide and antibiotics[J]. Modern Agricultural Science and Technology, 2024, 4, 139-142, 155.
|