畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (2): 912-924.doi: 10.11843/j.issn.0366-6964.2025.02.039
赵静贤1(), 杨晓伟1,2,3(
), 刘言言1, 赵自亮1,4, 赵光伟1,*(
), 赵永聚2,3,*(
)
收稿日期:
2024-04-07
出版日期:
2025-02-23
发布日期:
2025-02-26
通讯作者:
赵光伟,赵永聚
E-mail:1912790377@qq.com;yangxiaowei396@163.com;stay612@163.com;zyongju@163.com
作者简介:
赵静贤(2001-),女,新疆库尔勒人,硕士生,主要从事动物免疫学研究,E-mail: 1912790377@qq.com赵静贤和杨晓伟为同等贡献作者
基金资助:
ZHAO Jingxian1(), YANG Xiaowei1,2,3(
), LIU Yanyan1, ZHAO Ziliang1,4, ZHAO Guangwei1,*(
), ZHAO Yongju2,3,*(
)
Received:
2024-04-07
Online:
2025-02-23
Published:
2025-02-26
Contact:
ZHAO Guangwei, ZHAO Yongju
E-mail:1912790377@qq.com;yangxiaowei396@163.com;stay612@163.com;zyongju@163.com
摘要:
本研究旨在探究去甲基化酶1(ten eleven translocation, TET 1)对小鼠子宫内自然杀伤细胞(uterine natural killer, uNK)DNA甲基化的影响,深入了解其分子调控机制。无菌采集妊娠10 d小鼠子宫蜕膜,分离纯化uNK细胞进行培养,利用RNA干扰技术敲低TET 1基因的表达,提取TET 1干扰组和正常对照组细胞的总DNA,利用简化基因组DNA甲基化测序(reduced representation bisulfite sequencing, RRBS)技术进行测序,测序结果经生物信息学软件分析进行两组样本差异甲基化区域(differentially methylated region, DMR)的统计与注释,并进一步对DMR相关基因进行GO数据库分析及注释,了解相关基因的功能,利用KEGG数据库对其调控的信号通路进行富集分析。结果显示,TET 1干扰组相较对照组共有14 120个DMRs,其中高甲基化的DMR有4 897个,低甲基化的DMR有9 223个,分布在基因体(genebody)上的DMR最多,共9 762个,占总数的69.14%。DMR广泛分布于基因组的不同元件,且有些基因不同元件同时存在高甲基化和低甲基化的DMR。GO注释结果显示,存在DMR的基因主要集中在ATP结合、核酸结合、细胞组建、细胞分化、胚胎发育、RNA聚合酶Ⅱ转录调控、细胞增殖负调控等方面。KEGG数据库分析显示,DMR主要在代谢通路呈现显著富集,其中丙酮酸代谢通路共有12个参与代谢的关键分子出现了54个DMR,是出现DMR显著富集的代谢通路,其中乙酰辅酶A合成酶(Acss)、乳酸脱氢酶B(Ldhb)和丙酮酸激酶(Pklr)的DMR呈现单一高甲基化状态。此外,PI3K/AKT信号通路和HIF-1信号通路在介导丙酮酸代谢过程中发挥重要作用,且在基因体和启动子上的DMR也出现显著富集。综上,TET 1对小鼠uNK细胞具有甲基化调控作用,丙酮酸代谢是其发挥调控作用的主要途径,Acss、Ldhb和Pklr是其潜在的调控靶分子,PI3K/AKT和HIF-1是参与调控的重要信号通路。
中图分类号:
赵静贤, 杨晓伟, 刘言言, 赵自亮, 赵光伟, 赵永聚. 基于DNA甲基化组学技术分析TET 1基因对小鼠uNK细胞DNA甲基化的影响[J]. 畜牧兽医学报, 2025, 56(2): 912-924.
ZHAO Jingxian, YANG Xiaowei, LIU Yanyan, ZHAO Ziliang, ZHAO Guangwei, ZHAO Yongju. Analysis of the Effect of TET 1 Gene on Methylation of Mouse uNK Cells based on DNA Methylation Histology Technique[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 912-924.
表 2
原始数据trimming后的产量和质量统计表"
样本Sample | 序列Reads | 碱基Bases | Q20 | Q20(%) | Q30 | Q30(%) |
NC_uNK-1 | 18 661 773 | 4.95×109 | 4.80×109 | 96.99 | 4.42×109 | 89.16 |
NC_uNK-2 | 17 315 461 | 4.9×109 | 4.75×109 | 96.83 | 4.42×109 | 90.28 |
NC_uNK-3 | 17 357 287 | 4.92×109 | 4.77×109 | 96.97 | 4.42×109 | 89.88 |
TET 1KD_uNK-1 | 17 913 483 | 4.95×109 | 4.80×109 | 96.98 | 4.43×109 | 89.51 |
TET 1KD_uNK-2 | 18 460 166 | 4.92×109 | 4.77×109 | 97.09 | 4.39×109 | 89.30 |
TET 1KD_uNK-3 | 18 510 276 | 5.01×109 | 4.85×109 | 96.86 | 4.43×109 | 88.54 |
表 3
各样本C位点测序深度、覆盖度和Msp I酶切效率统计"
样本 Sample | C位点类型 C site type | 全基因组C位点数量 Number of whole genome C site | 平均测序深度 Average sequencing depth | 有效覆盖深度 Effective depth of coverage | 覆盖度Coverage | Msp I酶切效率/% Msp I digestion efficiency | |
测序深度5×以上位点 Sequencing depth of 5× or more site | 测序深度10×以上位点 Sequencing depth of 10× or more site | ||||||
NC-uNK-1 | CG | 4 477 985 | 20.956 05 | 20.956 05 | 0.638 982 | 0.516 772 | 99.53 |
CHG | 9 963 429 | 20.892 63 | 20.892 63 | 0.597 96 | 0.501 204 | ||
CHH | 23 957 443 | 19.630 41 | 19.630 41 | 0.560 375 | 0.464 912 | ||
NC-uNK-2 | CG | 4 827 758 | 14.268 55 | 14.268 55 | 0.518 964 | 0.368 129 | 99.60 |
CHG | 12 425 721 | 15.684 28 | 15.684 28 | 0.544 611 | 0.407 767 | ||
CHH | 32 032 980 | 15.228 59 | 15.228 59 | 0.520731 | 0.387 003 | ||
NC-uNK-3 | CG | 4 739 099 | 14.328 09 | 14.328 09 | 0.500 71 | 0.356 494 | 99.51 |
CHG | 12 170 807 | 15.762 94 | 15.762 94 | 0.522 228 | 0.391 935 | ||
CHH | 31 218 592 | 15.280 84 | 15.280 84 | 0.497 111 | 0.370 422 | ||
TET 1-KD-uNK-1 | CG | 4 971 883 | 15.737 09 | 15.737 09 | 0.559 367 | 0.417 201 | 98.39 |
CHG | 12 485 237 | 16.015 49 | 16.015 49 | 0.533 318 | 0.421 735 | ||
CHH | 31 158 989 | 15.422 20 | 15.422 20 | 0.506 721 | 0.398 892 | ||
TET 1-KD-uNK-2 | CG | 4 921 960 | 18.209 16 | 18.209 16 | 0.615 603 | 0.492 745 | 98.20 |
CHG | 11 919 056 | 17.074 72 | 17.074 72 | 0.542 751 | 0.449 476 | ||
CHH | 29 141 027 | 16.233 09 | 16.233 09 | 0.509 518 | 0.418 160 | ||
TET 1-KD-uNK-3 | CG | 5 326 157 | 15.892 160 | 15.892 16 | 0.560 050 | 0.434 085 | 97.61 |
CHG | 13 524 746 | 14.945 568 | 14.945 57 | 0.492 790 | 0.399 544 | ||
CHH | 33 889 240 | 14.220 125 | 14.220 12 | 0.458 943 | 0.370 210 |
表 4
丙酮酸代谢的关键酶基因不同元件中的DMR"
起始 Start | 终止 End | 差异甲基化水平 Diff | 启动子 Promoter | 2K上游 Upstream2k | 外显子 Exon | 内含子 Intron | 基因体 Genebody | 5′非翻译区 5′ UTR | 3′非翻译区 3′ UTR |
150 647 817 | 150 647 953 | 0.418 333 | -- | -- | -- | Acss | Acss | -- | -- |
23 204 147 | 23 204 310 | 0.340 533 | -- | -- | -- | -- | Ldhb | -- | -- |
173 153 059 | 173 153 123 | 0.263 533 | Pck1 | Pck1 | Pck1 | -- | Pck1 | Pck1 | -- |
4 585 071 | 4 585 163 | 0.209 667 | -- | -- | -- | Pcx | Pcx | -- | -- |
89 136 449 | 89 136 466 | 0.207 2 | Pklr | -- | -- | Pklr | Pklr | -- | -- |
160 137 770 | 160 137 858 | -0.111 93 | -- | Pdha1 | Pdha1 | -- | -- | ||
114 147 897 | 114 147 964 | -0.139 11 | -- | -- | -- | Acacb | Acacb | Acacb | -- |
111 626 585 | 111 626 779 | -0.139 57 | -- | -- | Ldhd | -- | Ldhd | -- | Ldhd |
30 606 560 | 30 606 690 | -0.142 03 | -- | -- | -- | Glo1 | Glo1 | -- | -- |
173 152 732 | 173153001 | -0.142 8 | Pck1 | Pck1 | -- | -- | -- | -- | -- |
160 137 879 | 160 137 935 | -0.173 4 | Pdha1 | -- | -- | Pdha1 | Pdha1 | -- | -- |
121 592 596 | 121 592 800 | -0.186 19 | -- | -- | -- | Aldh2 | Aldh2 | -- | -- |
4 618 284 | 4 618 430 | -0.188 06 | -- | -- | Pcx | -- | Pcx | -- | -- |
114 174 985 | 114 175 011 | -0.194 2 | -- | -- | -- | Acacb | Acacb | -- | -- |
44 984 450 | 44 984 669 | -0.194 38 | -- | -- | Grhpr | Grhpr | Grhpr | -- | -- |
114 146 703 | 114 147 413 | -0.198 64 | Acacb | -- | -- | Acacb | Acacb | Acacb | -- |
30 572 773 | 30 572 987 | -0.252 46 | -- | -- | -- | Acyp2 | Acyp2 | -- | -- |
1 | 雒瑞瑞, 王彩莲, 郎侠. DNA甲基化在家畜繁殖中的研究进展[J]. 农业生物技术学报, 2023, 31 (10): 2190- 2199. |
LUO R R , WANG C L , LANG X . Research progress on DNA methylation in domestic animal reproduction[J]. Journal of Agricultural Biotechnology, 2023, 31 (10): 2190- 2199. | |
2 |
TWIGT J M , HAMMICHE F , SINCLAIR K D , et al. Preconception folic acid use modulates estradiol and follicular responses to ovarian stimulation[J]. J Clin Endocrinol Metab, 2011, 96 (2): E322- E329.
doi: 10.1210/jc.2010-1282 |
3 |
CHAN D , MCGRAW S , KLEIN K , et al. Stability of the human sperm DNA methylome to folic acid fortification and short-term supplementation[J]. Hum Reprod, 2017, 32 (2): 272- 283.
doi: 10.1093/humrep/dew308 |
4 |
GRAZUL-BILSKA A T , JOHNSON M L , BOROWICZ P P , et al. Placental development during early pregnancy in sheep: effects of embryo origin on fetal and placental growth and global methylation[J]. Theriogenology, 2013, 79 (1): 94- 102.
doi: 10.1016/j.theriogenology.2012.09.013 |
5 |
BIRD A . DNA methylation patterns and epigenetic memory[J]. Genes Dev, 2002, 16 (1): 6- 21.
doi: 10.1101/gad.947102 |
6 |
SCHVBELER D . Function and information content of DNA methylation[J]. Nature, 2015, 517 (7534): 321- 326.
doi: 10.1038/nature14192 |
7 | 马飞. TET1表观修饰BCL6B调控胃癌进展的机制[D]. 福州: 福建医科大学, 2016. |
MA F. Mechanism of TET1 epigenetic modification of gene BCL6B in the regulation of gastric cancer[D]. Fuzhou: Fujian Medical University, 2016. (in Chinese) | |
8 | 黎明国, 华再东, 毕延震. TET蛋白在配子形成和早期胚胎中的作用研究进展[J]. 中国畜牧杂志, 2023, 59 (11): 71- 77. |
LI M G , HUA Z D , BI Y Z . Research progress on the role of TET protein in gametogenesis and early embryo[J]. Chinese Journal of Animal Science, 2023, 59 (11): 71- 77. | |
9 |
YAMAGUCHI S , HONG K , LIU R , et al. Tet1 controls meiosis by regulating meiotic gene expression[J]. Nature, 2012, 492 (7429): 443- 447.
doi: 10.1038/nature11709 |
10 |
XU M Z , QIAN J L , SI L , et al. The effect of epigenetic changes on the extrusion of the first polar body in pig oocytes during in vitro maturation[J]. Cell Reprogram, 2019, 21 (3): 129- 140.
doi: 10.1089/cell.2018.0071 |
11 |
YAMAGUCHI S , SHEN L , LIU Y T , et al. Role of Tet1 in erasure of genomic imprinting[J]. Nature, 2013, 504 (7480): 460- 464.
doi: 10.1038/nature12805 |
12 |
KHOUEIRY R , SOHNI A , THIENPONT B , et al. Lineage-specific functions of TET1 in the postimplantation mouse embryo[J]. Nat Genet, 2017, 49 (7): 1061- 1072.
doi: 10.1038/ng.3868 |
13 |
PENG V , XING X Y , BANDO J K , et al. Whole-genome profiling of DNA methylation and hydroxymethylation identifies distinct regulatory programs among innate lymphocytes[J]. Nat Immunol, 2022, 23 (4): 619- 631.
doi: 10.1038/s41590-022-01164-8 |
14 |
YANG R L , QU C Y , ZHOU Y , et al. Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis[J]. Immunity, 2015, 43 (2): 251- 263.
doi: 10.1016/j.immuni.2015.07.017 |
15 |
ORLANSKI S , LABI V , REIZEL Y , et al. Tissue-specific DNA demethylation is required for proper B-cell differentiation and function[J]. Proc Natl Acad Sci U S A, 2016, 113 (18): 5018- 5023.
doi: 10.1073/pnas.1604365113 |
16 |
SOJKA D K , YANG L P , YOKOYAMA W M . Uterine natural killer cells[J]. Front Immunol, 2019, 10, 960.
doi: 10.3389/fimmu.2019.00960 |
17 |
JABRANE-FERRAT N . Features of human decidual NK cells in healthy pregnancy and during viral infection[J]. Front Immunol, 2019, 10, 1397.
doi: 10.3389/fimmu.2019.01397 |
18 | 杨晓伟, 赵永聚. 哺乳动物子宫自然杀伤(uNK)细胞对妊娠的调控作用[J]. 畜牧兽医学报, 2020, 51 (5): 899- 906. |
YANG X W , ZHAO Y J . The regulation role of uterine natural killer (uNK) cells during pregnancy in mammals[J]. Acta Veterinaria Et Zootechnica Sinica, 2020, 51 (5): 899- 906. | |
19 |
XIE M , LI Y , MENG Y Z , et al. Uterine natural killer cells: a rising star in human pregnancy regulation[J]. Front Immunol, 2022, 13, 918550.
doi: 10.3389/fimmu.2022.918550 |
20 |
DÍAZ-HERNÁNDEZ I , ALECSANDRU D , GARCÍA-VELASCO J A , et al. Uterine natural killer cells: from foe to friend in reproduction[J]. Hum Reprod Update, 2021, 27 (4): 720- 746.
doi: 10.1093/humupd/dmaa062 |
21 | 杨晓伟, 赵自亮, 付雨, 等. TET1基因对小鼠uNK细胞增殖及IFN-γ、VEGF-C和TGF-β1转录水平的影响[J]. 畜牧兽医学报, 2023, 54 (3): 1221- 1228. |
YANG X W , ZHAO Z L , FU Y , et al. Effects of TET1 gene on the proliferation of mouse uNK cells and the transcriptional level of IFN-γ, VEGF-C and TGF-β1[J]. Acta Veterinaria Et Zootechnica Sinica, 2023, 54 (3): 1221- 1228. | |
22 | 赵柯郁, 苏丽娅. 胚胎发育过程的表观遗传调控研究进展[J]. 生物学杂志, 2023, 40 (6): 99- 103. |
ZHAO K Y , SU L Y . Advancement of epigenetic regulation in embryonic development[J]. Journal of Biology, 2023, 40 (6): 99- 103. | |
23 |
QIAN D C , ULRICH B C , PENG G , et al. Outcomes stratification of head and neck cancer using pre- and post-treatment DNA methylation from peripheral blood[J]. Int J Radiat Oncol Biol Phys, 2023, 115 (5): 1217- 1228.
doi: 10.1016/j.ijrobp.2022.11.009 |
24 |
STURGEON S R , SELA D A , BROWNE E P , et al. Prediagnostic white blood cell DNA methylation and risk of breast cancer in the prostate lung, colorectal, and ovarian cancer screening trial (PLCO) cohort[J]. Cancer Epidemiol Biomarkers Prev, 2021, 30 (8): 1575- 1581.
doi: 10.1158/1055-9965.EPI-20-1717 |
25 | 郭静思, 李馨阳, 杨跃辉. 甲基转移酶样蛋白家族在肿瘤疾病中的相关研究进展[J]. 中国药学杂志, 2024, 59 (5): 392- 397. |
GUO J S , LI X Y , YANG Y H . Research progress in research on methyltransferase-like protein family in cancer diseases[J]. Chinese Pharmaceutical Journal, 2024, 59 (5): 392- 397. | |
26 |
VASCONCELOS S , CANIÇAIS C , CHUVA DE SOUSA LOPES S M , et al. The role of DNA hydroxymethylation and TET enzymes in placental development and pregnancy outcome[J]. Clin Epigenet, 2023, 15 (1): 66.
doi: 10.1186/s13148-023-01483-z |
27 |
CUI Y H , LI T , YANG D H , et al. miR-29 regulates Tet1 expression and contributes to early differentiation of mouse ESCs[J]. Oncotarget, 2016, 7 (40): 64932- 64941.
doi: 10.18632/oncotarget.10751 |
28 |
NAKATSUKASA H , ODA M , YIN J H , et al. Loss of TET proteins in regulatory T cells promotes abnormal proliferation, Foxp3 destabilization and IL-17 expression[J]. Int Immunol, 2019, 31 (5): 335- 347.
doi: 10.1093/intimm/dxz008 |
29 |
LAIRD P W . Principles and challenges of genome-wide DNA methylation analysis[J]. Nat Rev Genet, 2010, 11 (3): 191- 203.
doi: 10.1038/nrg2732 |
30 | 王倩倩. 双加氧酶Tet对DNA甲基化修饰的影响及相关调控机制研究[D]. 北京: 中国农业大学, 2018. |
WANG Q Q. Effects of Tet dioxygenases on DNA methylation and related regulatory mechanisms[D]. Beijing: China Agricultural University, 2018. (in Chinese) | |
31 |
GRAY L R , TOMPKINS S C , TAYLOR E B . Regulation of pyruvate metabolism and human disease[J]. Cell Mol Life Sci, 2014, 71 (14): 2577- 2604.
doi: 10.1007/s00018-013-1539-2 |
32 |
ELIA I , ROWE J H , JOHNSON S , et al. Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8+ T cells[J]. Cell Metab, 2022, 34 (8): 1137- 1150. e6.
doi: 10.1016/j.cmet.2022.06.008 |
33 |
WENES M , JACCARD A , WYSS T , et al. The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function[J]. Cell Metab, 2022, 34 (5): 731- 746. e9.
doi: 10.1016/j.cmet.2022.03.013 |
34 |
PALMIERI E M , GONZALEZ-COTTO M , BASELER W A , et al. Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase[J]. Nat Commun, 2020, 11 (1): 698.
doi: 10.1038/s41467-020-14433-7 |
35 |
LIU Y Z , WANG R Y , ZHANG L C , et al. The lipid metabolism gene FTO influences breast cancer cell energy metabolism via the PI3K/AKT signaling pathway[J]. Oncol Lett, 2017, 13 (6): 4685- 4690.
doi: 10.3892/ol.2017.6038 |
36 | LIAO S , LIANG L , YUE C X , et al. CD38 is involved in cell energy metabolism via activating the PI3K/AKT/mTOR signaling pathway in cervical cancer cells[J]. Int J Oncol, 2020, 57 (1): 338- 354. |
37 |
LIU X L , LIU L D , CHEN K Y , et al. Huaier shows anti-cancer activities by inhibition of cell growth, migration and energy metabolism in lung cancer through PI3K/AKT/HIF-1α pathway[J]. J Cell Mol Med, 2021, 25 (4): 2228- 2237.
doi: 10.1111/jcmm.16215 |
38 |
INFANTINO V , SANTARSIERO A , CONVERTINI P , et al. Cancer cell metabolism in hypoxia: role of HIF-1 as key regulator and therapeutic target[J]. Int J Mol Sci, 2021, 22 (11): 5703.
doi: 10.3390/ijms22115703 |
39 |
CERNIGLIA G J , DEY S , GALLAGHER-COLOMBO S M , et al. The PI3K/Akt pathway regulates oxygen metabolism via pyruvate dehydrogenase (PDH)-E1α phosphorylation[J]. Mol Cancer Ther, 2015, 14 (8): 1928- 1938.
doi: 10.1158/1535-7163.MCT-14-0888 |
40 |
ZHOU S Q , SAKAMOTO K . Pyruvic acid/ethyl pyruvate inhibits melanogenesis in B16F10 melanoma cells through PI3K/AKT, GSK3β, and ROS-ERK signaling pathways[J]. Genes Cells, 2019, 24 (1): 60- 69.
doi: 10.1111/gtc.12654 |
41 |
LUO Z S , ZENG W Z , DU G C , et al. Enhancement of pyruvic acid production in Candida glabrata by engineering hypoxia-inducible factor 1[J]. Bioresour Technol, 2020, 295, 122248.
doi: 10.1016/j.biortech.2019.122248 |
42 | WANG Y , HUANG Y , YANG J , et al. Pyruvate is a prospective alkalizer to correct hypoxic lactic acidosis[J]. Mil Med Res, 2018, 5 (1): 13. |
43 |
XIE B Y , LV Q Y , NING C C , et al. TET1-GPER-PI3K/AKT pathway is involved in insulin-driven endometrial cancer cell proliferation[J]. Biochem Biophys Res Commun, 2017, 482 (4): 857- 862.
doi: 10.1016/j.bbrc.2016.11.124 |
44 |
ALI M M , PHILLIPS S A , MAHMOUD A M . HIF1α/TET1 pathway mediates hypoxia-induced adipocytokine promoter hypomethylation in human adipocytes[J]. Cells, 2020, 9 (1): 134.
doi: 10.3390/cells9010134 |
[1] | 黄心河, 李浩楠, 周潇, 徐佳婧, 张源淑, 韩正康. 植物雌激素大豆黄酮对小鼠乳腺上皮细胞乳成分合成和细胞增殖的影响及机制[J]. 畜牧兽医学报, 2025, 56(1): 417-429. |
[2] | 王靖萱, 代立志, 王振宇, 刘滢, 禹桐, 严敏, 王瑞龙, 肖建华. 高脂饮食诱导胰岛素抵抗过程中肝脏能量代谢特征的研究[J]. 畜牧兽医学报, 2024, 55(9): 4172-4185. |
[3] | 赵彤, 杨文哲, 潘飞龙, 赵树臣, 刘克祥, 吕占军, 赵立佳. 双酚A通过上调Apoa1基因的表达抑制TM3细胞睾酮合成[J]. 畜牧兽医学报, 2024, 55(8): 3516-3525. |
[4] | 班玛王清, 陈曦, 岳怡, 苏玉蓉, 岳华, 汤承. 一株牛呼吸道冠状病毒的分离鉴定及部分生物学特征[J]. 畜牧兽医学报, 2024, 55(7): 3094-3104. |
[5] | 戴帆, 刘占有, 张旭阳, 李武. 乌头酸脱羧酶1对BCG诱导巨噬细胞炎症反应的调控作用研究[J]. 畜牧兽医学报, 2024, 55(4): 1696-1706. |
[6] | 杜改梅, 王月, 茅慧华, 雷卫强, 储岳峰, 刘茂军. 绵羊肺炎支原体小鼠感染模型的建立[J]. 畜牧兽医学报, 2024, 55(4): 1728-1737. |
[7] | 张崇昊, 马畅, 李志强, 伍钢, 张源淑. 肾素血管紧张素系统在溃疡性结肠炎小鼠肠-血屏障损伤中的调控作用[J]. 畜牧兽医学报, 2024, 55(4): 1756-1765. |
[8] | 王康, 刘格言, 王宇, 杨振, 唐欣巍, 曹三杰, 黄小波, 颜其贵, 伍锐, 赵勤, 杜森焱, 文心田, 文翼平. 副猪革拉瑟菌影递送猪圆环病毒2型DNA二联疫苗的制备及小鼠免疫效果评价[J]. 畜牧兽医学报, 2024, 55(3): 1179-1191. |
[9] | 庄翠翠, 韩博. 大肠杆菌感染奶牛乳腺上皮细胞和小鼠乳腺组织致其线粒体损伤的机制研究[J]. 畜牧兽医学报, 2024, 55(2): 822-833. |
[10] | 李瑞芳, 张曼玉, 孙卿, 杜晶莹, 蒋蔚, 李增强, 夏炉明, 王权. 弓形虫PRU株速殖子感染小鼠产生包囊的试验研究[J]. 畜牧兽医学报, 2024, 55(10): 4620-4629. |
[11] | 梁睿, 范小瑞, 张晋强, 庞全海. 小鼠黑色素细胞沉默及过表达色素上皮衍生因子对黑色素合成的影响[J]. 畜牧兽医学报, 2023, 54(9): 3916-3930. |
[12] | 陈喜宏, 路桂聪, 王浩磊, 苟少校, 玉永雄, 林涛, 蒋曹德. 利用牛乳腺细胞和小鼠乳腺组织分析异绿原酸C通过NF-κB信号通路对乳腺炎症反应的抑制效应[J]. 畜牧兽医学报, 2023, 54(9): 3931-3940. |
[13] | 黄江, 李闯, 崔月琦, 袁雪莹, 赵志诚, 刘宇, 周玉龙, 朱战波, 张泽财. 基于小鼠模型研究肠道菌群紊乱对BVDV易感性的影响[J]. 畜牧兽医学报, 2023, 54(8): 3466-3473. |
[14] | 曹西月, 纪晓霞, 张崇昊, 张亚峰, 陈雨涛, 张源淑. 二脒那秦通过内源性激活ACE2抑制AngⅡ-TGF-β1通路缓解小鼠肺纤维化[J]. 畜牧兽医学报, 2023, 54(6): 2631-2640. |
[15] | 朱家桥, 程来洋, 曹江琴, 朱闽, 李军伟, 鞠辉明, 刘宗平. XRCC1在卵子和早期胚胎中的定位与功能的初步分析[J]. 畜牧兽医学报, 2023, 54(5): 2126-2133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||