畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (2): 900-911.doi: 10.11843/j.issn.0366-6964.2025.02.038
收稿日期:
2024-03-20
出版日期:
2025-02-23
发布日期:
2025-02-26
通讯作者:
杨倩
E-mail:lrl33316407@163.com;zxbyq@njau.edu.cn
作者简介:
刘芮伶(1998-),女,四川攀枝花人,硕士,主要从事仔猪黏膜免疫研究,E-mail: lrl33316407@163.com
基金资助:
LIU Ruiling(), LI Yuchen, TANG Rongfeng, YANG Qian*(
)
Received:
2024-03-20
Online:
2025-02-23
Published:
2025-02-26
Contact:
YANG Qian
E-mail:lrl33316407@163.com;zxbyq@njau.edu.cn
摘要:
本研究旨在探明猪流行性腹泻病毒(porcine epidemic diarrhea virus,PEDV)对仔猪肠道黏液分泌的影响并揭示其潜在的分子机制。构建仔猪PEDV感染模型,通过阿利新蓝-过碘酸-雪夫(Alcian blue-periodic acid-Schiff,AB-PAS)染色和免疫荧光染色,揭示病毒感染对仔猪肠道杯状细胞数量和功能的影响。进一步利用肠道干细胞构建杯状细胞的体外实验模型,探明PEDV在该细胞模型的复制特点后,初步解析PEDV感染对杯状细胞黏液蛋白转录及其分泌调控相关信号通路的影响。体内试验结果显示,PEDV主要感染仔猪的空肠和回肠,其对空肠具有更高的易感性,并能显著抑制肠道黏膜中杯状细胞的数量和分泌功能。进一步利用肠道干细胞建立了杯状细胞体外培养模型,发现病毒感染显著降低了杯状细胞Muc2、TFF3和SPDEF基因的转录水平,同时,黏液分泌调控的关键通路MAPK信号通路的活性也受到了明显抑制。PEDV感染会导致仔猪肠道杯状细胞数量减少,黏蛋白分泌水平降低。病毒对MAPK信号途径的抑制可能是导致这一现象的关键原因。
中图分类号:
刘芮伶, 李昱辰, 汤荣锋, 杨倩. 猪流行性腹泻病毒感染对小肠杯状细胞的影响及其机制的初步分析[J]. 畜牧兽医学报, 2025, 56(2): 900-911.
LIU Ruiling, LI Yuchen, TANG Rongfeng, YANG Qian. Preliminary Study on the Mechanism of Porcine Epidemic Diarrhea Virus Infection Affecting Small Intestinal Goblet Cells[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 900-911.
表 1
基因引物序列"
基因Gene | 引物对序列(5′→3′) Primer pairs sequence |
PEDV-N | CGGAACAGGACCTCACGCC/ACAATCTCAACTACGCTGGGAAG |
β-actin | AAGGATTCCTATGTGGGCGAC/CGTACAGGGATAGCACAGCC |
Muc2 | ATGCCCTTGCGTCCATAACA/AGGAGCAGTGTCCGTCAAAG |
SPDEF | CAAGCTGCTCAACATCACCG/GGAACTGCTCCTCCGACAT |
TFF3 | GTGCCTTGGTGTTTCAAGCC/GAAGAACTGTCCTCGGGTGG |
MAPK1 | GGCTGTTCCCAAATGCTGAC/AACTTGAATGGTGCTTCGGC |
MAPK3 | ACCTACAGTCTCTGCCCTCC/CAGCCGCTCCTTAGGTAGGT |
MAPK8 | CTCGCTACTACAGAGCACCC/TGTGGCAAACCATTTCTCCC |
MAP2K1 | GCACATGGATGGAGGTTCTC/GCTGACCCCAAAGTCACAGA |
1 |
LI H J , GAO D S , LI Y T , et al. Antiviral effect of lithium chloride on porcine epidemic diarrhea virus in vitro[J]. Res Vet Sci, 2018, 118, 288- 294.
doi: 10.1016/j.rvsc.2018.03.002 |
2 |
TAN L , LI Y L , HE J Y , et al. Epidemic and genetic characterization of porcine epidemic diarrhea virus strains circulating in the regions around Hunan, China, during 2017-2018[J]. Arch Virol, 2020, 165 (4): 877- 889.
doi: 10.1007/s00705-020-04532-7 |
3 |
WICHT O , LI W T , WILLEMS L , et al. Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture[J]. J Virol, 2014, 88 (14): 7952- 7961.
doi: 10.1128/JVI.00297-14 |
4 |
WANG H F , HUI P , UEMOTO Y , et al. Metabolomic and proteomic profiling of porcine intestinal epithelial cells infected with porcine epidemic diarrhea virus[J]. Int J Mol Sci, 2023, 24 (6): 5071.
doi: 10.3390/ijms24065071 |
5 |
JUNG K , SAIF L J . Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis[J]. Vet J (London, England: 1997), 2015, 204 (2): 134- 143.
doi: 10.1016/j.tvjl.2015.02.017 |
6 | LI Y C , WANG X Y , ZHANG E , et al. Calpain-1: a novel antiviral host factor identified in porcine small intestinal mucus[J]. mBio, 2022, 13 (5): e00358- 22. |
7 |
HANSSON G C . Role of mucus layers in gut infection and inflammation[J]. Curr Opin Microbiol, 2012, 15 (1): 57- 62.
doi: 10.1016/j.mib.2011.11.002 |
8 | DU J , LUO J Q , YU J , et al. Manipulation of intestinal antiviral innate immunity and immune evasion strategies of porcine epidemic diarrhea virus[J]. BioMed Res Int, 2019, 2019, 1862531. |
9 | LI L , FU F , GUO S S , et al. Porcine intestinal enteroids: a new model for studying enteric coronavirus porcine epidemic diarrhea virus infection and the host innate response[J]. J Virol, 2019, 93 (5): e01682- 18. |
10 |
YANG J W , TIAN G , CHEN D W , et al. Dietary 25-hydroxyvitamin D3 supplementation alleviates porcine epidemic diarrhea virus infection by improving intestinal structure and immune response in weaned pigs[J]. Animals, 2019, 9 (9): 627.
doi: 10.3390/ani9090627 |
11 |
VAN DIEP N , CHOIJOOKHUU N , FUKE N , et al. New tropisms of porcine epidemic diarrhoea virus (PEDV) in pigs naturally coinfected by variants bearing large deletions in the spike (S) protein and PEDVs possessing an intact S protein[J]. Transbound Emerg Dis, 2020, 67 (6): 2589- 2601.
doi: 10.1111/tbed.13607 |
12 |
NIEDERWERDER M C , HESSE R A . Swine enteric coronavirus disease: A review of 4 years with porcine epidemic diarrhoea virus and porcine deltacoronavirus in the United States and Canada[J]. Transbound Emerg Dis, 2018, 65 (3): 660- 675.
doi: 10.1111/tbed.12823 |
13 | YIN L D , CHEN J F , LI L , et al. Aminopeptidase N expression, not interferon responses, determines the intestinal segmental tropism of porcine deltacoronavirus[J]. J Virol, 2020, 94 (14): e00480- 20. |
14 |
JUNG K , MIYAZAKI A , HU H , et al. Susceptibility of porcine IPEC-J2 intestinal epithelial cells to infection with porcine deltacoronavirus (PDCoV) and serum cytokine responses of gnotobiotic pigs to acute infection with IPEC-J2 cell culture-passaged PDCoV[J]. Vet Microbiol, 2018, 221, 49- 58.
doi: 10.1016/j.vetmic.2018.05.019 |
15 |
CHEN Y M , HELM E T , GABLER N , et al. Alterations in intestinal innate mucosal immunity of weaned pigs during porcine epidemic diarrhea virus infection[J]. Vet Pathol, 2020, 57 (5): 642- 652.
doi: 10.1177/0300985820932140 |
16 |
LIANG J X , LI Y , YAN Z S , et al. Study of the effect of intestinal immunity in neonatal piglets coinfected with porcine deltacoronavirus and porcine epidemic diarrhea virus[J]. Arch Virol, 2022, 167 (8): 1649- 1657.
doi: 10.1007/s00705-022-05461-3 |
17 | 王娜, 唐雪婵. 黏蛋白-2与肠黏膜屏障损伤的研究进展[J]. 基础医学与临床, 2015, 35 (7): 985- 988. |
WANG N , TANG X C . Research progress of mucin-2 and intestinal mucosal barrier damage[J]. Basic & Clinical Medicine, 2015, 35 (7): 985- 988. | |
18 |
STEDMAN A , BECK-CORMIER S , LE BOUTEILLER M , et al. Ribosome biogenesis dysfunction leads to P53-mediated apoptosis and goblet cell differentiation of mouse intestinal stem/progenitor cells[J]. Cell Death Differ, 2015, 22 (11): 1865- 1876.
doi: 10.1038/cdd.2015.57 |
19 |
RENES I B , VERBURG M , VAN NISPEN D J P M , et al. Epithelial proliferation, cell death, and gene expression in experimental colitis: alterations in carbonic anhydrase I, mucin MUC2, and trefoil factor 3 expression[J]. Int J Colorectal Dis, 2002, 17 (5): 317- 326.
doi: 10.1007/s00384-002-0409-4 |
20 |
BOSHUIZEN J A , REIMERINK J H J , MALE A M K V , et al. Homeostasis and function of goblet cells during rotavirus infection in mice[J]. Virology, 2005, 337 (2): 210- 221.
doi: 10.1016/j.virol.2005.03.039 |
21 |
CORTEZ V , BOYD D F , CRAWFORD J C , et al. Astrovirus infects actively secreting goblet cells and alters the gut mucus barrier[J]. Nat Commun, 2020, 11 (1): 2097.
doi: 10.1038/s41467-020-15999-y |
22 |
WANG X , YAMAMOTO Y , WILSON L H , et al. Cloning and variation of ground state intestinal stem cells[J]. Nature, 2015, 522 (7555): 173- 178.
doi: 10.1038/nature14484 |
23 |
LI H J , RAY S K , KUCUKURAL A , et al. Reduced Neurog3 gene dosage shifts enteroendocrine progenitor towards goblet cell lineage in the mouse intestine[J]. Cell Mol Gastroenterol Hepatol, 2021, 11 (2): 433- 448.
doi: 10.1016/j.jcmgh.2020.08.006 |
24 |
HUANG Z H , WU H M , FAN J J , et al. Colonic mucin-2 attenuates acute necrotizing pancreatitis in rats by modulating intestinal homeostasis[J]. FASEB J, 2023, 37 (7): e22994.
doi: 10.1096/fj.202201998R |
25 |
CHANG R M , WEN L Q , CHANG J X , et al. Repair of damaged intestinal mucosa in a mouse model of sepsis[J]. World J Emerg Med, 2013, 4 (3): 223- 228.
doi: 10.5847/wjem.j.issn.1920-8642.2013.03.012 |
26 |
PELASEYED T , BERGSTRÖM J H , GUSTAFSSON J K , et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system[J]. Immunol Rev, 2014, 260 (1): 8- 20.
doi: 10.1111/imr.12182 |
27 |
GIPSON I K . Goblet cells of the conjunctiva: a review of recent findings[J]. Prog Retin Eye Res, 2016, 54, 49- 63.
doi: 10.1016/j.preteyeres.2016.04.005 |
28 |
GRINAT J , KOSEL F , GOVEAS N , et al. Epigenetic modifier balances mapk and WNT signalling in differentiation of goblet and paneth cells[J]. Life Sci Alliance, 2022, 5 (4): e202101187.
doi: 10.26508/lsa.202101187 |
29 |
KANNO H , HORIKAWA Y , HODGES R R , et al. Cholinergic agonists transactivate EGFR and stimulate MAPK to induce goblet cell secretion[J]. Am J Physiol Cell Physiol, 2003, 284 (4): C988- C998.
doi: 10.1152/ajpcell.00582.2001 |
30 |
JOHANSSON M E V , HANSSON G C . Immunological aspects of intestinal mucus and mucins[J]. Nat Rev Immunol, 2016, 16 (10): 639- 649.
doi: 10.1038/nri.2016.88 |
31 |
GUO J J , WANG D S , HUANG H T . Spontaneous remission of edema and regranulation of goblet cells in rat tracheae after capsaicin-induced acute inflammation[J]. Anat Embryol (Berl), 2003, 206 (4): 301- 309.
doi: 10.1007/s00429-002-0299-9 |
32 |
MADAS B G , DROZSDIK E J . Effects of mucus thickness and goblet cell hyperplasia on microdosimetric quantities characterizing the bronchial epithelium upon radon exposure[J]. Int J Radiat Biol, 2018, 94 (11): 967- 974.
doi: 10.1080/09553002.2018.1511931 |
33 |
WADDELL A , VALLANCE J E , HUMMEL A , et al. IL-33 induces murine intestinal goblet cell differentiation indirectly via innate lymphoid cell IL-13 secretion[J]. J Immunol (Baltimore, Md: 1950), 2019, 202 (2): 598- 607.
doi: 10.4049/jimmunol.1800292 |
34 |
DOLAN B , ERMUND A , MARTINEZ-ABAD B , et al. Clearance of small intestinal crypts involves goblet cell mucus secretion by intracellular granule rupture and enterocyte ion transport[J]. Sci Signal, 2022, 15 (752): eabl5848.
doi: 10.1126/scisignal.abl5848 |
35 |
FAN B C , ZHOU J Z , ZHAO Y X , et al. Identification of cell types and transcriptome landscapes of porcine epidemic diarrhea virus-infected porcine small intestine using single-cell rna sequencing[J]. J Immunol (Baltimore, Md: 1950), 2023, 210 (3): 271- 282.
doi: 10.4049/jimmunol.2101216 |
36 |
ZHANG Y , CHEN H J , YU J , et al. Comparative transcriptomic analysis of porcine epidemic diarrhea virus epidemic and classical strains in IPEC-J2 cells[J]. Vet Microbiol, 2022, 273, 109540.
doi: 10.1016/j.vetmic.2022.109540 |
37 |
KAR S K , WELLS J M , ELLEN E D , et al. Organoids: a promising new in vitro platform in livestock and veterinary research[J]. Vet Res, 2021, 52 (1): 43.
doi: 10.1186/s13567-021-00904-2 |
38 |
HEUBERGER J , KOSEL F , QI J J , et al. Shp2/MAPK signaling controls goblet/paneth cell fate decisions in the intestine[J]. Proc Natl Acad Sci U S A, 2014, 111 (9): 3472- 3477.
doi: 10.1073/pnas.1309342111 |
39 |
CHOUDRY H A , MAVANUR A , O'MALLEY M E , et al. MEK-ERK pathway inhibition reduces mucin production in a murine xenograft model of pseudomyxoma peritonei[J]. Cancer Res, 2012, 72 (8_Supplement): 5253.
doi: 10.1158/1538-7445.AM2012-5253 |
40 |
ZHANG B B , LI J , FU J L , et al. Interaction between mucus layer and gut microbiota in non-alcoholic fatty liver disease: soil and seeds[J]. Chin Med J, 2023, 136 (12): 1390- 1400.
doi: 10.1097/CM9.0000000000002711 |
41 |
LEE S I , KIM I H . Nucleotide-mediated SPDEF modulates TFF3-mediated wound healing and intestinal barrier function during the weaning process[J]. Sci Rep, 2018, 8 (1): 4827.
doi: 10.1038/s41598-018-23218-4 |
42 | CHEN G Y , STAPPENBECK T S . Mucus, it is not just a static barrier[J]. Sci Signal, 2014, 7 (323): pe11. |
43 |
TANABE T , KANOH S , TSUSHIMA K , et al. Clarithromycin inhibits interleukin-13-induced goblet cell hyperplasia in human airway cells[J]. Am J Respir Cell Mol Biol, 2011, 45 (5): 1075- 1083.
doi: 10.1165/rcmb.2010-0327OC |
[1] | 李跃, 张长春, 刘光裕, 高梦源, 符超俊, 邢家宝, 徐思佳, 邝麒元, 刘静, 高校鹏, 王衡, 龚浪, 张桂红, 孙彦阔. 宏转录组测序技术在一起仔猪病毒性腹泻疾病诊断中的运用及分析[J]. 畜牧兽医学报, 2024, 55(8): 3579-3589. |
[2] | 马亚娟, 苏恺, 林依丹, 王亚文, 张亚楠, 袁洪兴, 袁晨, 宋勤叶. 盐霉素体外对猪流行性腹泻病毒的抑制效果[J]. 畜牧兽医学报, 2024, 55(4): 1661-1671. |
[3] | 肖乐, 刘峻源, 曾雯玉, 汪芹, 韩雯珏, 刘彦泠, 范誉, 徐雨婷, 杨贝妮, 肖雄, 王自力. 基于微生物组和宿主转录组整合分析香砂六君子汤对ETEC诱导断奶腹泻仔猪回肠损伤的调控机制[J]. 畜牧兽医学报, 2024, 55(2): 797-808. |
[4] | 常伟辰, 李帅奇, 李琰, 闫微, 张红英, 王彦彬, 杨明凡, 张昂克. 白头翁散煎剂发酵物对感染猪流行性腹泻病毒仔猪肠道屏障功能的影响[J]. 畜牧兽医学报, 2023, 54(10): 4403-4410. |
[5] | 梁继翔, 焦哲, 严治山, 李旸, 李栋祺, 刘晓丽, 谷长勤, 胡薛英, 程国富, 张万坡. 猪德尔塔冠状病毒感染对初生仔猪小肠杯状细胞数量及Hes1和MUC2表达的影响[J]. 畜牧兽医学报, 2021, 52(3): 772-781. |
[6] | 常新见, 周金柱, 殷杰, 牛贝贝, 范宝超, 郭容利, 赵永祥, 牛家强, 何孔旺, 李彬. 2017—2019年华东地区猪场主要病毒性腹泻病原调查[J]. 畜牧兽医学报, 2020, 51(12): 3141-3150. |
[7] | 林春发, 郝永峰, 刘娟. 术苦芩总多糖对湿热泄泻仔猪小肠杯状细胞数量以及MUC-2和ITF-3 mRNA转录的影响[J]. 畜牧兽医学报, 2019, 50(6): 1301-1311. |
[8] | 王隆柏, 王晨燕, 吴学敏, 陈秋勇, 车勇良, 陈如敬, 周伦江. 变异猪流行性腹泻病毒M和N融合双基因的原核表达及表达产物免疫原性分析[J]. 畜牧兽医学报, 2018, 49(6): 1249-1255. |
[9] | 董建国, 王瑞, 曲哲会, 赵瑜, 刘涛. 2014—2015年豫南地区猪流行性腹泻病毒S基因变异分析[J]. 畜牧兽医学报, 2018, 49(4): 859-864. |
[10] | 姚作俊, 郝达仁, 白云, 颜国华, 王海敏, 宋勤叶, 李潭清. 检测猪流行性腹泻病毒S1蛋白抗体的间接ELISA方法[J]. 畜牧兽医学报, 2017, 48(6): 1085-1091. |
[11] | 何欢,陈新诺,曾泽,任玉鹏,汤承,张斌,岳华. 副猪嗜血杆菌OmpP2刺激猪肺泡巨噬细胞炎性因子mRNA转录及致炎机制初步分析[J]. 畜牧兽医学报, 2016, 47(7): 1428-1434. |
[12] | 李健,陈耀星,陈福宁,王子旭,曹静,董玉兰. MAPK信号通路在炔雌醚诱导大鼠生精细胞凋亡中的作用研究[J]. 畜牧兽医学报, 2016, 47(2): 381-387. |
[13] | 张秀秀,郭云涛,黄万龙,李嫒,苗向阳. 靶向MAPK信号通路调控脂肪细胞分化的microRNAs[J]. 畜牧兽医学报, 2016, 47(11): 2159-2166. |
[14] | 任玉鹏,张斌,岳华,刘燕. 猪流行性腹泻病毒、猪肠道病毒9型及猪嵴病毒三重RT-PCR检测方法建立及初步应用[J]. 畜牧兽医学报, 2014, 45(4): 603-608. |
[15] | 陈付菊;常兰;魏芳. 藏山羊和藏绵羊小肠黏膜免疫相关细胞的比较研究[J]. 畜牧兽医学报, 2011, 42(4): 567-571. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||