1 |
BEYDAG-TASÖZ B S , YENNEK S , GRAPIN-BOTTON A . Towards a better understanding of diabetes mellitus using organoid models[J]. Nat Rev Endocrinol, 2023, 19 (4): 232- 248.
doi: 10.1038/s41574-022-00797-x
|
2 |
CHO N H , SHAW J E , KARURANGA S , et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Res Clin Pract, 2018, 138, 271- 281.
doi: 10.1016/j.diabres.2018.02.023
|
3 |
SUN Y X , TAO Q , WU X Q , et al. The utility of exosomes in diagnosis and therapy of diabetes mellitus and associated complications[J]. Front Endocrinol, 2021, 12, 756581.
doi: 10.3389/fendo.2021.756581
|
4 |
HOU Y L , DING W Y , WU P S , et al. Adipose-derived stem cells alleviate liver injury induced by type 1 diabetes mellitus by inhibiting mitochondrial stress and attenuating inflammation[J]. Stem Cell Res Ther, 2022, 13 (1): 132.
doi: 10.1186/s13287-022-02760-z
|
5 |
RIVERA-ESTEBAN J , PONS M , PLANAS A , et al. Prediction of clinical events by liver stiffness and chronic kidney disease by NAFLD in patients with type-2 diabetes[J]. Gastroenterol Hepatol, 2023, 46 (9): 682- 691.
doi: 10.1016/j.gastrohep.2022.11.001
|
6 |
ZHANG X R , YIP T C F , TSE Y K , et al. Duration of type 2 diabetes and liver-related events in nonalcoholic fatty liver disease: A landmark analysis[J]. Hepatology, 2023, 78 (6): 1816- 1827.
doi: 10.1097/HEP.0000000000000432
|
7 |
BǍLǍŞESCU E , ION D A , CIOPLEA M , et al. Caspases, cell death and diabetic nephropathy[J]. Rom J Intern Med, 2015, 53 (4): 296- 303.
|
8 |
KANASAKI K , TADURI G , KOYA D . Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis[J]. Front Endocrinol (Lausanne), 2013, 4, 7.
|
9 |
HUANG H Y , LIU Y P , XU Z , et al. Effect of fucoidan on kidney injury in type 2 diabetic rats based on PI3K/AKT/Nrf2[J]. J Funct Foods, 2022, 90, 104976.
doi: 10.1016/j.jff.2022.104976
|
10 |
赵梦雅, 张维, 赵学军, 等. 基于中医古籍的羊乳功用研究[J]. 中国中医基础医学杂志, 2019, 25 (9): 1295- 1298.
|
|
ZHAO M Y , ZHANG W , ZHAO X J , et al. Literature research of goat milk in ancient books of traditional Chinese medicine[J]. Journal of Basic Chinese Medicine, 2019, 25 (9): 1295- 1298.
|
11 |
FLIS Z , MOLIK E . Importance of bioactive substances in sheep's milk in human health[J]. Int J Mol Sci, 2021, 22 (9): 4364.
doi: 10.3390/ijms22094364
|
12 |
DELGADILLO-PUGA C , NORIEGA L G , MORALES-ROMERO A M , et al. Goat's milk intake prevents obesity, hepatic steatosis and insulin resistance in mice fed a high-fat diet by reducing inflammatory markers and increasing energy expenditure and mitochondrial content in skeletal muscle[J]. Int J Mol Sci, 2020, 21 (15): 5530.
doi: 10.3390/ijms21155530
|
13 |
LIU W , ZHOU Y L , SUN H , et al. Goat milk improves glucose homeostasis via enhancement of hepatic and skeletal muscle AMP-activated protein kinase activation and modulation of gut microbiota in streptozocin-induced diabetic rats[J]. Mol Nutr Food Res, 2021, 65 (6): e2000888.
doi: 10.1002/mnfr.202000888
|
14 |
刘佳欣. 绵羊奶调节糖代谢的作用研究[D]. 杨凌: 西北农林科技大学, 2023.
|
|
LIU J X. Study on the role of sheep milk in regulating sugar metabolism[D]. Yangling: Northwest A&F University, 2023. (in Chinese)
|
15 |
QIAO S M , LIU R , LV C J , et al. Bergenin impedes the generation of extracellular matrix in glomerular mesangial cells and ameliorates diabetic nephropathy in mice by inhibiting oxidative stress via the mTOR/β-TrcP/Nrf2 pathway[J]. Free Radic Biol Med, 2019, 145, 118- 135.
doi: 10.1016/j.freeradbiomed.2019.09.003
|
16 |
ZHANG L L , GE W P , SONG Y X , et al. The composition and nutrition characteristics in sheep milk[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22 (1): 413- 423.
|
17 |
BRUNI N , CAPUCCHIO M T , BIASIBETTI E , et al. Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine[J]. Molecules, 2016, 21 (6): 752.
doi: 10.3390/molecules21060752
|
18 |
BERLUTTI F , PANTANELLA F , NATALIZI T , et al. Antiviral properties of lactoferrin--a natural immunity molecule[J]. Molecules, 2011, 16 (8): 6992- 7018.
doi: 10.3390/molecules16086992
|
19 |
EMBLETON N D , BERRINGTON J E , MCGUIRE W , et al. Lactoferrin: Antimicrobial activity and therapeutic potential[J]. Semin Fetal Neonatal Med, 2013, 18 (3): 143- 149.
doi: 10.1016/j.siny.2013.02.001
|
20 |
SIQUEIROS-CENDÓN T , ARÉVALO-GALLEGOS S , IGLESIAS-FIGUEROA B F , et al. Immunomodulatory effects of lactoferrin[J]. Acta Pharmacol Sin, 2014, 35 (5): 557- 566.
doi: 10.1038/aps.2013.200
|
21 |
KANWAR J R , ROY K , PATEL Y , et al. Multifunctional iron bound lactoferrin and nanomedicinal approaches to enhance its bioactive functions[J]. Molecules, 2015, 20 (6): 9703- 9731.
doi: 10.3390/molecules20069703
|
22 |
ZHENG J P , XIE Y Z , LI F , et al. Lactoferrin improves cognitive function and attenuates brain senescence in aged mice[J]. J Funct Foods, 2020, 65, 103736.
doi: 10.1016/j.jff.2019.103736
|
23 |
LORDAN R , WALSH A , CRISPIE F , et al. Caprine milk fermentation enhances the antithrombotic properties of cheese polar lipids[J]. J Funct Foods, 2019, 61, 103507.
doi: 10.1016/j.jff.2019.103507
|
24 |
BJØRNSHAVE A , HERMANSEN K , HOLST J J . Pre-meal effect of whey proteins on metabolic parameters in subjects with and without type 2 diabetes: a randomized, crossover trial[J]. Nutrients, 2018, 10 (2): 122.
doi: 10.3390/nu10020122
|
25 |
DĄBEK M , KRUSZEWSKA D , FILIP R , et al. α-Ketoglutarate (AKG) absorption from pig intestine and plasma pharmacokinetics[J]. J Anim Physiol Anim Nutr (Berl), 2005, 89 (11-12): 419- 426.
doi: 10.1111/j.1439-0396.2005.00566.x
|
26 |
ZHAO Y Y , XING H C , WANG X M , et al. Management of diabetes mellitus in patients with chronic liver diseases[J]. J Diabetes Res, 2019, 2019, 6430486.
|
27 |
GJORGJIEVA M , MITHIEUX G , RAJAS F . Hepatic stress associated with pathologies characterized by disturbed glucose production[J]. Cell Stress, 2019, 3 (3): 86- 99.
doi: 10.15698/cst2019.03.179
|
28 |
WILD S H , WALKER J J , MORLING J R , et al. Cardiovascular disease, cancer, and mortality among people with type 2 diabetes and alcoholic or nonalcoholic fatty liver disease hospital admission[J]. Diabetes Care, 2018, 41 (2): 341- 347.
doi: 10.2337/dc17-1590
|
29 |
HU X Y , LIU Z G , LU Y T , et al. Glucose metabolism enhancement by 10-hydroxy-2-decenoic acid via the PI3K/AKT signaling pathway in high-fat-diet/streptozotocin induced type 2 diabetic mice[J]. Food Funct, 2022, 13 (19): 9931- 9946.
doi: 10.1039/D1FO03818D
|
30 |
CHEN X Y , ZHANG Z F , NIU H M , et al. Goat milk improves glucose metabolism in type 2 diabetic mice and protects pancreatic β-cell functions[J]. Mol Nutr Food Res, 2024, 68 (1): e2200842.
doi: 10.1002/mnfr.202200842
|
31 |
JULIBERT A , DEL MAR BIBILONI M , TUR J A . Dietary fat intake and metabolic syndrome in adults: A systematic review[J]. Nutr Metab Cardiovasc Dis, 2019, 29 (9): 887- 905.
doi: 10.1016/j.numecd.2019.05.055
|
32 |
CHEN S C , TSENG C H . Dyslipidemia, kidney disease, and cardiovascular disease in diabetic patients[J]. Rev Diabet Stud, 2013, 10 (2-3): 88- 100.
doi: 10.1900/RDS.2013.10.88
|
33 |
刘鑫, 刘甜甜, 张彦丽, 等. 芪参益气滴丸对高脂饮食联合链脲霉素诱导糖尿病小鼠肝损伤的作用及机制[J]. 天津中医药, 2023, 40 (7): 904- 909.
|
|
LIU X , LIU T T , ZHANG Y L , et al. Effect and mechanism of Qishen Yiqi Droplet on liver injury induced by high-fat diet combined with streptozotocin in diabetes mice[J]. Tianjin Journal of Traditional Chinese Medicine, 2023, 40 (7): 904- 909.
|
34 |
CHEN J F , ZHANG Q , LIU D W , et al. Exosomes: Advances, development and potential therapeutic strategies in diabetic nephropathy[J]. Metabolism, 2021, 122, 154834.
doi: 10.1016/j.metabol.2021.154834
|
35 |
GLASSOCK R J , RULE A D . Aging and the kidneys: Anatomy, physiology and consequences for defining chronic kidney disease[J]. Nephron, 2016, 134 (1): 25- 29.
doi: 10.1159/000445450
|
36 |
PÉREZ-LÓPEZ L , BORONAT M , MELIÁN C , et al. Animal models and renal biomarkers of diabetic nephropathy[J]. Adv Exp Med Biol, 2021, 1307, 521- 551.
|
37 |
CARLSSON A C , INGELSSON E , SUNDSTRÖM J , et al. Use of proteomics to investigate kidney function decline over 5 years[J]. Clin J Am Soc Nephrol, 2017, 12 (8): 1226- 1235.
doi: 10.2215/CJN.08780816
|
38 |
朱重师, 牛晨, 刘佳欣, 等. 绵羊奶生物活性成分的功能分析[J]. 中国乳品工业, 2024, 52 (1): 40- 46.
|
|
ZHU Z S , NIU C , LIU J X , et al. Overview of functional analysis of bioactive components in sheep milk[J]. China Dairy Industry, 2024, 52 (1): 40- 46.
|
39 |
WANG B , TIMILSENA Y P , BLANCH E , et al. Lactoferrin: Structure, function, denaturation and digestion[J]. Crit Rev Food Sci Nutr, 2019, 59 (4): 580- 596.
doi: 10.1080/10408398.2017.1381583
|
40 |
ASHOKBHAI J K , BASAIAWMOIT B , SAKURE A , et al. Purification and characterization of antioxidative and antimicrobial peptides from lactic-fermented sheep milk[J]. J Food Sci Technol, 2022, 59 (11): 4262- 4272.
doi: 10.1007/s13197-022-05493-2
|