1 |
沈思思. 猪轮状病毒的研究进展[J]. 中国畜牧业, 2022, (14): 48- 49.
doi: 10.3969/j.issn.2095-2473.2022.14.023
|
|
SHEN S S . Research progress of porcine rotavirus[J]. China Animal Industry, 2022, (14): 48- 49.
doi: 10.3969/j.issn.2095-2473.2022.14.023
|
2 |
VLASOVA A N , AMIMO J O , SAIF L J . Porcine rotaviruses: epidemiology, immune responses and control strategies[J]. Viruses, 2017, 9 (3): 48.
doi: 10.3390/v9030048
|
3 |
杨志刚, 汤德元, 张森, 等. 猪轮状病毒检测技术研究进展[J]. 动物医学进展, 2021, 42 (7): 96- 100.
doi: 10.3969/j.issn.1007-5038.2021.07.018
|
|
YANG Z G , TANG D Y , ZHANG S , et al. Progress on detection techniques of porcine rotavirus[J]. Progress in Veterinary Medicine, 2021, 42 (7): 96- 100.
doi: 10.3969/j.issn.1007-5038.2021.07.018
|
4 |
卓儒浩, 吴嘉敏, 许梦慧, 等. 姜黄素抑制轮状病毒感染猪肠上皮细胞的作用研究[J]. 动物营养学报, 2022, 34 (2): 1285- 1295.
doi: 10.3969/j.issn.1006-267x.2022.02.060
|
|
ZHUO R H , WU J M , XU M H , et al. Inhibitory effect of curcumin against rotavirus infection in intestinal porcine epithelial cells[J]. Chinese Journal of Animal Nutrition, 2022, 34 (2): 1285- 1295.
doi: 10.3969/j.issn.1006-267x.2022.02.060
|
5 |
REN X L , SALEEM W , HAES R , et al. Milk lactose protects against porcine group A rotavirus infection[J]. Front Microbiol, 2022, 13, 989242.
doi: 10.3389/fmicb.2022.989242
|
6 |
MANN J T , RILEY B A , BAKER S F . All differential on the splicing front: host alternative splicing alters the landscape of virus-host conflict[J]. Semin Cell Dev Biol, 2023, 146, 40- 56.
doi: 10.1016/j.semcdb.2023.01.013
|
7 |
EMERY A , SWANSTROM R . HIV-1:to splice or not to splice, that is the question[J]. Viruses, 2021, 13 (2): 181.
doi: 10.3390/v13020181
|
8 |
MEYER F . Viral interactions with components of the splicing machinery[J]. Prog Mol Biol Transl Sci, 2016, 142, 241- 268.
|
9 |
AJIRO M , ZHENG Z M . Oncogenes and RNA splicing of human tumor viruses[J]. Emerg Microbes Infect, 2014, 3 (9): e63.
|
10 |
ZHENG Z M . Viral oncogenes, noncoding RNAs, and RNA splicing in human tumor viruses[J]. Int J Biol Sci, 2010, 6 (7): 730- 755.
|
11 |
LI R X , GAO S Y , CHEN H Y , et al. Virus usurps alternative splicing to clear the decks for infection[J]. Virol J, 2023, 20 (1): 131.
doi: 10.1186/s12985-023-02098-9
|
12 |
BOUDREAULT S , ROY P , LEMAY G , et al. Viral modulation of cellular RNA alternative splicing: a new key player in virus-host interactions?[J]. Wiley Interdiscip Rev RNA, 2019, 10 (5): e1543.
doi: 10.1002/wrna.1543
|
13 |
FRANCIES F Z , DLAMINI Z . Aberrant splicing events and epigenetics in viral oncogenomics: current therapeutic strategies[J]. Cells, 2021, 10 (2): 239.
doi: 10.3390/cells10020239
|
14 |
LYU M Y , LAI H L , WANG Y L , et al. Roles of alternative splicing in infectious diseases: from hosts, pathogens to their interactions[J]. Chin Med J (Engl), 2023, 136 (7): 767- 779.
|
15 |
BEEMON K L . Retroviral RNA processing[J]. Viruses, 2022, 14 (5): 1113.
doi: 10.3390/v14051113
|
16 |
ESPARZA M , BHAT P , FONTOURA B M . Viral-host interactions during splicing and nuclear export of influenza virus mRNAs[J]. Curr Opin Virol, 2022, 55, 101254.
doi: 10.1016/j.coviro.2022.101254
|
17 |
GAN Z D , WEI W Y , WU J M , et al. Resveratrol and curcumin improve intestinal mucosal integrity and decrease m6A RNA methylation in the intestine of weaning piglets[J]. ACS Omega, 2019, 4 (17): 17438- 17446.
doi: 10.1021/acsomega.9b02236
|
18 |
PASQUARIELLO R , VERDILE N , BREVINI T A L , et al. The role of resveratrol in mammalian reproduction[J]. Molecules, 2020, 25 (19): 4554.
doi: 10.3390/molecules25194554
|
19 |
MENG T T , XIAO D F , MUHAMMED A , et al. Anti-inflammatory action and mechanisms of resveratrol[J]. Molecules, 2021, 26 (1): 229.
doi: 10.3390/molecules26010229
|
20 |
ZHOU D D , LUO M , HUANG S Y , et al. Effects and mechanisms of resveratrol on aging and age-related diseases[J]. Oxid Med Cell Longev, 2021, 2021, 9932218.
doi: 10.1155/2021/9932218
|
21 |
DOCHERTY J J , FU M M H , STIFFLER B S , et al. Resveratrol inhibition of herpes simplex virus replication[J]. Antiviral Res, 1999, 43 (3): 145- 155.
doi: 10.1016/S0166-3542(99)00042-X
|
22 |
ZHAO X H , CUI Q K , FU Q T , et al. Antiviral properties of resveratrol against pseudorabies virus are associated with the inhibition of IκB kinase activation[J]. Sci Rep, 2017, 7 (1): 8782.
doi: 10.1038/s41598-017-09365-0
|
23 |
MOHD A , ZAINAL N , TAN K K , et al. Resveratrol affects Zika virus replication in vitro[J]. Sci Rep, 2019, 9 (1): 14336.
doi: 10.1038/s41598-019-50674-3
|
24 |
CHEN X X , SONG X , ZHAO X H , et al. Insights into the anti-inflammatory and antiviral mechanisms of resveratrol[J]. Mediators Inflamm, 2022, 2022, 7138756.
|
25 |
ALESCI A , NICOSIA N , FUMIA A , et al. Resveratrol and immune cells: a link to improve human health[J]. Molecules, 2022, 27 (2): 424.
doi: 10.3390/molecules27020424
|
26 |
OTSUKA K , YAMAMOTO Y , OCHIYA T . Regulatory role of resveratrol, a microRNA-controlling compound, in HNRNPA1 expression, which is associated with poor prognosis in breast cancer[J]. Oncotarget, 2018, 9 (37): 24718- 24730.
doi: 10.18632/oncotarget.25339
|
27 |
QIAN S , GU J L , DAI W F , et al. Sirt1 enhances tau exon 10 inclusion and improves spatial memory of Htau mice[J]. Aging (Albany NY), 2018, 10 (9): 2498- 2510.
|
28 |
ZHOU X , NIU J W , ZHANG J F , et al. Commentary: identification of pulmonary infections with porcine Rotavirus A in pigs with respiratory disease[J]. Front Vet Sci, 2023, 10, 1102602.
doi: 10.3389/fvets.2023.1102602
|
29 |
LI W , LEI M K , LI Z F , et al. Development of a genetically engineered bivalent vaccine against porcine epidemic diarrhea virus and porcine rotavirus[J]. Viruses, 2022, 14 (8): 1746.
doi: 10.3390/v14081746
|
30 |
WANG A M , TAO W , TONG J Y , et al. m6A modifications regulate intestinal immunity and rotavirus infection[J]. eLife, 2022, 11, e73628.
doi: 10.7554/eLife.73628
|
31 |
李萍, 程晓馨. 白藜芦醇抗菌抗病毒作用的研究进展[J]. 中国微生态学杂志, 2014, 26 (10): 1215- 1219.
|
|
LI P , CHENG X X . The effects of resveratrol on antibacterial and antiviral properties[J]. Chinese Journal of Microecology, 2014, 26 (10): 1215- 1219.
|
32 |
RUTKOWSKI A J , ERHARD F , L'HERNAULT A , et al. Widespread disruption of host transcription termination in HSV-1 infection[J]. Nat Commun, 2015, 6, 7126.
doi: 10.1038/ncomms8126
|
33 |
ASHRAF U , BENOIT-PILVEN C , NAVRATIL V , et al. Influenza virus infection induces widespread alterations of host cell splicing[J]. NAR Genom Bioinform, 2020, 2 (4): lqaa095.
doi: 10.1093/nargab/lqaa095
|
34 |
BATRA R , STARK T J , CLARK A E , et al. RNA-binding protein CPEB1 remodels host and viral RNA landscapes[J]. Nat Struct Mol Biol, 2016, 23 (12): 1101- 1110.
doi: 10.1038/nsmb.3310
|
35 |
BUSCH A , HERTEL K J . Evolution of SR protein and hnRNP splicing regulatory factors[J]. Wiley Interdiscip Rev RNA, 2012, 3 (1): 1- 12.
doi: 10.1002/wrna.100
|