1 |
SZCZEPANEK J , SKORUPA M , TRETYN A . MicroRNA as a potential therapeutic molecule in cancer[J]. Cells, 2022, 11 (6): 1008.
doi: 10.3390/cells11061008
|
2 |
LIANG C , YANG J B , LIN X Y , et al. Recent advances in the diagnostic and therapeutic roles of microRNAs in colorectal cancer progression and metastasis[J]. Front Oncol, 2022, 12, 911856.
doi: 10.3389/fonc.2022.911856
|
3 |
CHATTERJEE B , SAHA P , BOSE S , et al. MicroRNAs: as critical regulators of tumor-associated macrophages[J]. Int J Mol Sci, 2020, 21 (19): 7117.
doi: 10.3390/ijms21197117
|
4 |
HULL R , MARIMA R , ALAOUNA M , et al. Viral encoded miRNAs in tumorigenesis: theranostic opportunities in precision oncology[J]. Microorganisms, 2022, 10 (7): 1448.
doi: 10.3390/microorganisms10071448
|
5 |
VOJTECHOVA Z , TACHEZY R . The role of miRNAs in virus-mediated oncogenesis[J]. Int J Mol Sci, 2018, 19 (4): 1217.
doi: 10.3390/ijms19041217
|
6 |
MACHADO C B , DA CUNHA L S , DA SILVA MAUÉS J H , et al. Role of miRNAs in human T cell leukemia virus type 1 induced T cell leukemia: a literature review and bioinformatics approach[J]. Int J Mol Sci, 2022, 23 (10): 5486.
doi: 10.3390/ijms23105486
|
7 |
TENG M , ZHU Z J , YAO Y X , et al. Critical roles of non-coding RNAs in lifecycle and biology of Marek's disease herpesvirus[J]. Sci China Life Sci, 2023, 66 (2): 251- 268.
doi: 10.1007/s11427-022-2258-4
|
8 |
CHEN L , GAO D , SHAO Z Z , et al. miR-155 indicates the fate of CD4+ T cells[J]. Immunol Lett, 2020, 224, 40- 49.
doi: 10.1016/j.imlet.2020.05.003
|
9 |
靳睿哲, 王迪娴, 赵乾, 等. miR-155-5p在肿瘤中的表达、功能以及调控作用[J]. 肿瘤防治研究, 2023, 50 (3): 309- 315.
doi: 10.3971/j.issn.1000-8578.2023.22.1026
|
|
JIN R Z , WANG D X , ZHAO Q , et al. miR-155-5p expression, function and regulation in tumors[J]. Cancer Research on Prevention and Treatment, 2023, 50 (3): 309- 315.
doi: 10.3971/j.issn.1000-8578.2023.22.1026
|
10 |
杨攀, 王萍, 周细武. 循环miR-155作为肿瘤生物标志物的研究进展[J]. 中国细胞生物学学报, 2016, 38 (10): 1281- 1287.
doi: 10.11844/cjcb.2016.10.0138
|
|
YANG P , WANG P , ZHOU X W . Recent advances in circulating miR-155 as tumor biomarker[J]. Chinese Journal of Cell Biology, 2016, 38 (10): 1281- 1287.
doi: 10.11844/cjcb.2016.10.0138
|
11 |
余祖华, 丁轲, 郁川, 等. gga-miR-155对MDCC-MSB1细胞生物学行为的影响[J]. 畜牧兽医学报, 2018, 49 (11): 2496- 2504.
doi: 10.11843/j.issn.0366-6964.2018.11.022
|
|
YU Z H , DING K , YU C , et al. Effect of gga-miR-155 on the biological behavior of MDCC-MSB1 cells[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49 (11): 2496- 2504.
doi: 10.11843/j.issn.0366-6964.2018.11.022
|
12 |
DAVISON A J , EBERLE R , EHLERS B , et al. The order Herpesvirales[J]. Arch Virol, 2009, 154 (1): 171- 177.
doi: 10.1007/s00705-008-0278-4
|
13 |
ZHUANG G Q , SUN A J , TENG M , et al. A tiny RNA that packs a big punch: the critical role of a viral miR-155 ortholog in lymphomagenesis in Marek's disease[J]. Front Microbiol, 2017, 8, 1169.
doi: 10.3389/fmicb.2017.01169
|
14 |
ZHANG Y Y , TANG N , LUO J , et al. Marek's disease virus-encoded microRNA 155 ortholog critical for the induction of lymphomas is not essential for the proliferation of transformed cell lines[J]. J Virol, 2019, 93 (17): e00713- 19.
|
15 |
LUO J , SUN A J , TENG M , et al. Expression profiles of microRNAs encoded by the oncogenic Marek's disease virus reveal two distinct expression patterns in vivo during different phases of disease[J]. J Gen Virol, 2011, 92 (Pt 3): 608- 620.
|
16 |
ZHAO Y G , XU H T , YAO Y X , et al. Critical role of the virus-encoded microRNA-155 ortholog in the induction of Marek's disease lymphomas[J]. PLoS Pathog, 2011, 7 (2): e1001305.
doi: 10.1371/journal.ppat.1001305
|
17 |
YU Z H , TENG M , SUN A J , et al. Virus-encoded miR-155 ortholog is an important potential regulator but not essential for the development of lymphomas induced by very virulent Marek's disease virus[J]. Virology, 2014, 448, 55- 64.
doi: 10.1016/j.virol.2013.09.017
|
18 |
ZHAO Y G , YAO Y X , XU H T , et al. A functional microRNA-155 ortholog encoded by the oncogenic Marek's disease virus[J]. J Virol, 2009, 83 (1): 489- 492.
doi: 10.1128/JVI.01166-08
|
19 |
CHI J Q , TENG M , YU Z H , et al. Marek's disease virus-encoded analog of microRNA-155 activates the oncogene c-Myc by targeting LTBP1 and suppressing the TGF-β signaling pathway[J]. Virology, 2015, 476, 72- 84.
doi: 10.1016/j.virol.2014.11.027
|
20 |
WANG J M , XIANG H J , LU Y F , et al. Role and clinical significance of TGF-β1 and TGF-βR1 in malignant tumors (Review)[J]. Int J Mol Med, 2021, 47 (4): 55.
doi: 10.3892/ijmm.2021.4888
|
21 |
KUHIKAR R , KHAN N , PHILIP J , et al. Transforming growth factor β1 accelerates and enhances in vitro red blood cell formation from hematopoietic stem cells by stimulating mitophagy[J]. Stem Cell Res Ther, 2020, 11 (1): 71.
doi: 10.1186/s13287-020-01603-z
|
22 |
BELKOURCHIA F , DESROSIERS R R . The protein L-Isoaspartyl (D-Aspartyl) methyltransferase regulates glial-to-mesenchymal transition and migration induced by TGF-β1 in human U-87 MG Glioma cells[J]. Int J Mol Sci, 2022, 23 (10): 5698.
doi: 10.3390/ijms23105698
|
23 |
DEVAN A R , PAVITHRAN K , NAIR B , et al. Deciphering the role of transforming growth factor-beta 1 as a diagnostic-prognostic-therapeutic candidate against hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28 (36): 5250- 5264.
doi: 10.3748/wjg.v28.i36.5250
|
24 |
KIM N , RYU H , KIM S , et al. CXCR7 promotes migration and invasion in head and neck squamous cell carcinoma by upregulating TGF-β1/Smad2/3 signaling[J]. Sci Rep, 2019, 9 (1): 18100.
doi: 10.1038/s41598-019-54705-x
|
25 |
DONG Z H , SUN Y Y , WEI G W , et al. Ergosterol ameliorates diabetic nephropathy by attenuating mesangial cell proliferation and extracellular matrix deposition via the TGF-β1/Smad2 signaling pathway[J]. Nutrients, 2019, 11 (2): 483.
doi: 10.3390/nu11020483
|
26 |
WU S , JI L A , FAN X M , et al. Jieduquyuzishen prescription attenuates renal fibrosis in MRL/lpr mice via inhibiting EMT and TGF-β1/Smad2/3 pathway[J]. Evid Based Complement Alternat Med, 2022, 2022, 4987323.
|
27 |
ZHANG Y Q , HUA L P , LIN C F , et al. Pien-Tze-Huang alleviates CCl4-induced liver fibrosis through the inhibition of HSC autophagy and the TGF-β1/Smad2 pathway[J]. Front Pharmacol, 2022, 13, 937484.
doi: 10.3389/fphar.2022.937484
|
28 |
LOUAFI F , MARTINEZ-NUNEZ R T , SANCHEZ-ELSNER T . MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-β[J]. J Biol Chem, 2010, 285 (53): 41328- 41336.
doi: 10.1074/jbc.M110.146852
|
29 |
MAHESH G , BISWAS R . MicroRNA-155: a master regulator of inflammation[J]. J Interferon Cytokine Res, 2019, 39 (6): 321- 330.
doi: 10.1089/jir.2018.0155
|
30 |
XU W D , FENG S Y , HUANG A F . Role of miR-155 in inflammatory autoimmune diseases: a comprehensive review[J]. Inflamm Res, 2022, 71 (12): 1501- 1517.
doi: 10.1007/s00011-022-01643-6
|
31 |
COSTINEAN S , ZANESI N , PEKARSKY Y , et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice[J]. Proc Natl Acad Sci U S A, 2006, 103 (18): 7024- 7029.
doi: 10.1073/pnas.0602266103
|
32 |
RILEY K J , RABINOWITZ G S , YARIO T A , et al. EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency[J]. EMBO J, 2012, 31 (9): 2207- 2221.
doi: 10.1038/emboj.2012.63
|
33 |
LIU Y , YANG H L , ZHONG F F , et al. Anti-apoptotic function of herpes simplex virus-2 latency-associated transcript RL1 sequence and screening of its encoded microRNAs[J]. Clin Exp Dermatol, 2016, 41 (7): 782- 791.
doi: 10.1111/ced.12671
|
34 |
LIU X Y , HAPPEL C , ZIEGELBAUER J M . Kaposi's sarcoma-associated herpesvirus microRNAs target GADD45B to protect infected cells from cell cycle arrest and apoptosis[J]. J Virol, 2017, 91 (3): e02045- 16.
|
35 |
QIE S , DIEHL J A . Cyclin D1, cancer progression, and opportunities in cancer treatment[J]. J Mol Med (Berl), 2016, 94 (12): 1313- 1326.
doi: 10.1007/s00109-016-1475-3
|
36 |
MONTALTO F I , DE AMICIS F . Cyclin D1 in cancer: a molecular connection for cell cycle control, adhesion and invasion in tumor and stroma[J]. Cells, 2020, 9 (12): 2648.
doi: 10.3390/cells9122648
|
37 |
DADSENA S , ZOLLO C , GARCÍA-SÁEZ A J . Mechanisms of mitochondrial cell death[J]. Biochem Soc Trans, 2021, 49 (2): 663- 674.
doi: 10.1042/BST20200522
|
38 |
余祖华, 丁轲, 贾艳艳, 等. 鸡TGFβ1对MDCC-MSB1细胞增殖、凋亡、迁移与侵袭的影响[J]. 畜牧兽医学报, 2020, 51 (10): 2567- 2575.
doi: 10.11843/j.issn.0366-6964.2020.10.025
|
|
YU Z H , DING K , JIA Y Y , et al. Effect of Gallus TGFβ1 on the proliferation, apoptosis, migration and invasion of MDCC-MSB1 cells[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (10): 2567- 2575.
doi: 10.11843/j.issn.0366-6964.2020.10.025
|