畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (8): 3408-3417.doi: 10.11843/j.issn.0366-6964.2024.08.014
王怡1,2(), 高娟2, 胡悦旻2, 杨跃飞2, 范博钧2, 鞠辉明1,2,*(
)
收稿日期:
2024-01-16
出版日期:
2024-08-23
发布日期:
2024-08-28
通讯作者:
鞠辉明
E-mail:307014000@qq.com;hmju@yzu.edu.cn
作者简介:
王怡(1979-),女,江苏扬州人,博士,讲师,主要从事动物模型与疾病研究,E-mail: 307014000@qq.com
基金资助:
Yi WANG1,2(), Juan GAO2, Yuemin HU2, Yuefei YANG2, Bojun FAN2, Huiming JU1,2,*(
)
Received:
2024-01-16
Online:
2024-08-23
Published:
2024-08-28
Contact:
Huiming JU
E-mail:307014000@qq.com;hmju@yzu.edu.cn
摘要:
旨在研究短期饥饿胁迫对猪骨骼肌卫星细胞(skeletal muscle satellite cells,SMSCs)代谢及自噬发生的影响,解析自噬机制在骨骼肌发育调控网络中的地位和作用,为改良家猪产肉性状提供理论依据。将本实验室分离并保存的SMSCs细胞系复苏,按培养体系中血清浓度将细胞分为20%血清组(对照组)、15%血清组、10%血清组、5%血清组和0%血清组,以形成不同程度的饥饿胁迫。当细胞融合度达到70%~80%后再培养24 h进行检测,每组4个重复。流式细胞术检测各组细胞凋亡率、膜电位和活性氧水平;试剂盒测定ATP水平;WB检测自噬标志蛋白LC3B-Ⅱ、p62和通路相关蛋白AMPK、mTOR的表达;透射电镜检测细胞线粒体形态和细胞器的变化。结果显示,随着细胞中血清浓度降低,细胞活力、p62蛋白量、p-mTOR/mTOR比值逐渐降低;细胞凋亡率、ROS水平、ATP水平、LC3B-Ⅱ蛋白水平、p-AMPK/AMPK比值、细胞内自噬溶酶体数量、细胞核及线粒体异常率则逐渐升高;与对照组相比,15%组膜电位显著升高,5%和0%组极显著降低。这表明,短期血清饥饿胁迫能诱导基于AMPK/mTOR信号通路的自噬发生,加快细胞代谢,但同时存在加快细胞凋亡、抑制细胞增殖等毒副作用。
中图分类号:
王怡, 高娟, 胡悦旻, 杨跃飞, 范博钧, 鞠辉明. 短期血清饥饿胁迫对猪骨骼肌卫星细胞代谢及自噬发生的影响[J]. 畜牧兽医学报, 2024, 55(8): 3408-3417.
Yi WANG, Juan GAO, Yuemin HU, Yuefei YANG, Bojun FAN, Huiming JU. Effect of Transient Serum Starvation on Metabolism and Autophagy of Porcine Skeletal Muscle Satellite Cells[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3408-3417.
1 | MOHAMMADABADI M , BORDBAR F , JENSEN J , et al. Key genes regulating skeletal muscle development and growth in farm animals[J]. Animals (Basel), 2021, 11 (3): 835. |
2 |
张冬杰, 汪亮, 马红, 等. 低温胁迫下民猪骨骼肌的转录调控分析[J]. 畜牧兽医学报, 2022, 53 (8): 2524- 2536.
doi: 10.11843/j.issn.0366-6964.2022.08.011 |
ZHANG D J , WANG L , MA H , et al. Analysis of transcriptional regulation in min pig skeletal muscle under low temperature stress[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (8): 2524- 2536.
doi: 10.11843/j.issn.0366-6964.2022.08.011 |
|
3 |
MAURO A . Satellite cell of skeletal muscle fibers[J]. J Biophys Biochem Cytol, 1961, 9 (2): 493- 495.
doi: 10.1083/jcb.9.2.493 |
4 |
METZGER K , TUCHSCHERER A , PALIN M F , et al. Establishment and validation of cell pools using primary muscle cells derived from satellite cells of pig skeletal muscle[J]. In Vitro Cell Dev Biol Anim, 2020, 56 (3): 193- 199.
doi: 10.1007/s11626-019-00428-2 |
5 |
RENAULT V , ROLLAND E , THORNELL L E , et al. Distribution of satellite cells in the human vastus lateralis muscle during aging[J]. Exp Gerontol, 2002, 37 (12): 1513- 1514.
doi: 10.1016/S0531-5565(02)00095-5 |
6 |
FIACCO E , CASTAGNETTI F , BIANCONI V , et al. Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles[J]. Cell Death Differ, 2016, 23 (11): 1839- 1849.
doi: 10.1038/cdd.2016.70 |
7 |
OHSUMI Y . Historical landmarks of autophagy research[J]. Cell Res, 2014, 24 (1): 9- 23.
doi: 10.1038/cr.2013.169 |
8 |
WARNER R D . Review: analysis of the process and drivers for cellular meat production[J]. Animal, 2019, 13 (12): 3041- 3058.
doi: 10.1017/S1751731119001897 |
9 |
PRICE P J . Best practices for media selection for mammalian cells[J]. In Vitro Cell Dev Biol Anim, 2017, 53 (8): 673- 681.
doi: 10.1007/s11626-017-0186-6 |
10 |
KLIONSKY D J , SCHULMAN B A . Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins[J]. Nat Struct Mol Biol, 2014, 21 (4): 336- 345.
doi: 10.1038/nsmb.2787 |
11 |
YANG J B , SUN H F , TIAN F , et al. Autophagy suppression plays a role in parenteral nutrition-associated lung injury[J]. Clin Nutr, 2021, 40 (2): 560- 570.
doi: 10.1016/j.clnu.2020.06.002 |
12 |
VANHOREBEEK I , CASAER M , GUNST J . Nutrition and autophagy deficiency in critical illness[J]. Curr Opin Crit Care, 2023, 29 (4): 306- 314.
doi: 10.1097/MCC.0000000000001056 |
13 |
CALL J A , NICHENKO A S . Autophagy: an essential but limited cellular process for timely skeletal muscle recovery from injury[J]. Autophagy, 2020, 16 (7): 1344- 1347.
doi: 10.1080/15548627.2020.1753000 |
14 |
CHEN W , CHEN Y S , LIU Y X , et al. Autophagy in muscle regeneration: potential therapies for myopathies[J]. J Cachexia Sarcopenia Muscle, 2022, 13 (3): 1673- 1685.
doi: 10.1002/jcsm.13000 |
15 |
PAOLINI A , OMAIRI S , MITCHELL R , et al. Attenuation of autophagy impacts on muscle fibre development, starvation induced stress and fibre regeneration following acute injury[J]. Sci Rep, 2018, 8 (1): 9062.
doi: 10.1038/s41598-018-27429-7 |
16 |
MCDANELD T G , SMITH T P , DOUMIT M E , et al. MicroRNA transcriptome profiles during swine skeletal muscle development[J]. BMC Genomics, 2009, 10, 77.
doi: 10.1186/1471-2164-10-77 |
17 |
ZHU L H , HOU L J , OU J X , et al. MiR-199b represses porcine muscle satellite cells proliferation by targeting JAG1[J]. Gene, 2019, 691, 24- 33.
doi: 10.1016/j.gene.2018.12.052 |
18 |
WANG S S , TAN B H , XIAO L Y , et al. Long non-coding RNA Gm10561 promotes myogenesis by sponging miR-432[J]. Epigenetics, 2022, 17 (13): 2039- 2055.
doi: 10.1080/15592294.2022.2105052 |
19 |
FRY C S , LEE J D , JACKSON J R , et al. Regulation of the muscle fiber micro environment by activated satellite cells during hypertrophy[J]. FASEB J, 2014, 28 (4): 1654- 1665.
doi: 10.1096/fj.13-239426 |
20 |
REN H , LI Y , TANG Z , et al. Genomic structure, chromosomal localization and expression profile of a porcine long non-coding RNA isolated from long SAGE libraries[J]. Anim Genet, 2009, 40 (4): 499- 508.
doi: 10.1111/j.1365-2052.2009.01868.x |
21 |
CORBETT R J , FORD L M , RANEY N E , et al. Pig fetal skeletal muscle development is associated with genome-wide DNA hypomethylation and corresponding alterations in transcript and microRNA expression[J]. Genome, 2023, 66 (4): 68- 79.
doi: 10.1139/gen-2022-0008 |
22 |
LV W , JIANG W , LUO H M , et al. Long noncoding RNA lncMREF promotes myogenic differentiation and muscle regeneration by interacting with the Smarca5/p300 complex[J]. Nucleic Acids Res, 2022, 50 (18): 10733- 10755.
doi: 10.1093/nar/gkac854 |
23 | 李倩倩, 李龙, 黄子莹, 等. 猪lncRNA TCONS_00791383对骨骼肌卫星细胞增殖分化的影响[J]. 畜牧兽医学报, 2020, 51 (6): 1177- 1186. |
LI Q Q , LI L , HUANG Z Y , et al. Effect of pig lncRNA TCONS_00791383 on the proliferation and differentiation of skeletal muscle satellite cells[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (6): 1177- 1186. | |
24 | 胡悦旻. 不同程度自噬对猪骨骼肌卫星细胞代谢及分化功能影响的研究[D]. 扬州: 扬州大学, 2022. |
HU Y M. Effects of different levels of autophagy on metabolism and differentiation of porcine skeletal muscle satellite cells[D]. Yangzhou: Yangzhou University, 2022. (in Chinese) | |
25 |
JU H M , ZHANG J Q , BAI L J , et al. The transgenic cloned pig population with integrated and controllable GH expression that has higher feed efficiency and meat production[J]. Sci Rep, 2015, 5, 10152.
doi: 10.1038/srep10152 |
26 |
ALSAYYAH C , OZTURK O , CAVELLINI L , et al. The regulation of mitochondrial homeostasis by the ubiquitin proteasome system[J]. Biochim Biophys Acta Bioenerg, 2020, 1861 (12): 148302.
doi: 10.1016/j.bbabio.2020.148302 |
27 | SZTALRYD C , BRASAEMLE D L . The perilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2017, 1862 (10 Pt B): 1221- 1232. |
28 |
KISHIKAWA J I , INOUE Y , FUJIKAWA M , et al. General anesthetics cause mitochondrial dysfunction and reduction of intracellular ATP levels[J]. PLoS One, 2018, 13 (1): e0190213.
doi: 10.1371/journal.pone.0190213 |
29 |
WANG Y , GAO J , FAN B J , et al. Different levels of autophagy induced by transient serum starvation regulate metabolism and differentiation of porcine skeletal muscle satellite cells[J]. Sci Rep, 2023, 13 (1): 13153.
doi: 10.1038/s41598-023-40350-y |
30 |
SANDRI M . Autophagy in skeletal muscle[J]. FEBS Lett, 2010, 584 (7): 1411- 1416.
doi: 10.1016/j.febslet.2010.01.056 |
31 |
PAUNOVIC V , VUCICEVIC L , MISIRKIC MARJANOVIC M , et al. Autophagy receptor p62 regulates SARS-CoV-2-induced inflammation in COVID-19[J]. Cells, 2023, 12 (9): 1282.
doi: 10.3390/cells12091282 |
32 |
SENER E F , DANA H , TAHTASAKAL R , et al. Heterozygous Cc2d1a mice show sex-dependent changes in the Beclin-1/p62 ratio with impaired prefrontal cortex and hippocampal autophagy[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2023, 125, 110764.
doi: 10.1016/j.pnpbp.2023.110764 |
33 |
SHVETS E , ABADA A , WEIDBERG H , et al. Dissecting the involvement of LC3B and GATE-16 in p62 recruitment into autophagosomes[J]. Autophagy, 2011, 7 (7): 683- 688.
doi: 10.4161/auto.7.7.15279 |
34 |
LI L , LI S Y , PAN Z F , et al. Bilirubin impacts microglial autophagy via the Akt-mTOR signaling pathway[J]. J Neurochem, 2023, 167 (4): 582- 599.
doi: 10.1111/jnc.15984 |
35 |
YIN Z Y , PASCUAL C , KLIONSKY D J . Autophagy: machinery and regulation[J]. Microb Cell, 2016, 3 (12): 588- 596.
doi: 10.15698/mic2016.12.546 |
36 |
PARK J M , LEE D H , KIM D H . Redefining the role of AMPK in autophagy and the energy stress response[J]. Nat Commun, 2023, 14 (1): 2994.
doi: 10.1038/s41467-023-38401-z |
37 |
KIM J , KUNDU M , VIOLLET B , et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nat Cell Biol, 2011, 13 (2): 132- 141.
doi: 10.1038/ncb2152 |
38 |
SHUCHI S , RATHO R K , MOHI G K , et al. Modulation of autophagy and mTOR signaling pathway genes in respiratory epithelium by respiratory syncytial virus (RSV) in children suffering from acute lower respiratory tract infections[J]. J Med Virol, 2023, 95 (3): e28666.
doi: 10.1002/jmv.28666 |
39 |
LI H , PANG B , NIE B , et al. Dioscin promotes autophagy by regulating the AMPK-mTOR pathway in ulcerative colitis[J]. Immunopharmacol Immunotoxicol, 2022, 44 (2): 238- 246.
doi: 10.1080/08923973.2022.2037632 |
40 |
ZHOU J L , LUO Y S , KANG X C , et al. The root extract of Scutellaria baicalensis Georgi promotes β cell function and protects from apoptosis by inducing autophagy[J]. J Ethnopharmacol, 2022, 284, 114790.
doi: 10.1016/j.jep.2021.114790 |
[1] | 夏振涛, 王楠, 王婉洁, 周期律, 黄雷, 牟玉莲. pAPN基因敲除的IPEC-J2介导的TGEV感染特征分析[J]. 畜牧兽医学报, 2024, 55(8): 3395-3407. |
[2] | 曹馨予, 蔡佳炜, 鲍志远, 姚漱玉, 李云鹏, 陈阳, 吴信生, 赵博昊. ATG14调控家兔毛囊毛乳头细胞自噬进程的功能探究[J]. 畜牧兽医学报, 2024, 55(8): 3472-3481. |
[3] | 杨程, 刘野, 程宁, 王凯月, 李欣蕾, 孙久英, 韩俊平, 李文军, 王欢欢, 邵笑, 程雪娇, 孙英峰. 一株PRRSV-2谱系1.8与1.5重组毒株的基因组特征分析[J]. 畜牧兽医学报, 2024, 55(8): 3570-3578. |
[4] | 李跃, 张长春, 刘光裕, 高梦源, 符超俊, 邢家宝, 徐思佳, 邝麒元, 刘静, 高校鹏, 王衡, 龚浪, 张桂红, 孙彦阔. 宏转录组测序技术在一起仔猪病毒性腹泻疾病诊断中的运用及分析[J]. 畜牧兽医学报, 2024, 55(8): 3579-3589. |
[5] | 吕林丹, 牟豪, 胡霞, 刘明妮, 李绍梅, 李星, 宋振辉, 杨柳. 猪传染性胃肠炎病毒S基因RAA检测方法的建立与初步应用[J]. 畜牧兽医学报, 2024, 55(8): 3590-3599. |
[6] | 鲜婷婷, 刘彦, 曹忻, 冯涛. 母猪子宫内膜炎阴道菌群与血清促炎细胞因子的变化及其相关性分析[J]. 畜牧兽医学报, 2024, 55(8): 3688-3698. |
[7] | 段慧慧, 任仕航, 张宏印, 于瑞, 刘忠虎, 杜向党, 商艳红. 猪链球菌SC124菌株中ICE_Prophage携带耐药基因的水平转移[J]. 畜牧兽医学报, 2024, 55(8): 3699-3705. |
[8] | 窦腾飞, 吴嘉浩, 吴姿仪, 白利瑶, 李新建, 韩雪蕾, 乔瑞敏, 王克君, 杨峰, 王一宁, 李秀领. 基因组选择和选配技术在猪育种中的应用[J]. 畜牧兽医学报, 2024, 55(7): 2795-2808. |
[9] | 梁小娟, 李雨爽, 李莹莹, 王守伟. 北京黑猪脂肪前体细胞的分离培养及成脂诱导分化研究[J]. 畜牧兽医学报, 2024, 55(7): 2877-2889. |
[10] | 张瑞琪, 厐彦芹, 李再山, 尚秀国, 兰干球, 郭金彪, 赵云翔. 基于智能饲喂开展哺乳母猪采食量基因组遗传评估研究[J]. 畜牧兽医学报, 2024, 55(7): 2890-2900. |
[11] | 刘维哲, 罗成刚, 袁蓉, 廖艺杰, 文艺悯, 孙莹, 俞恩波, 曹三杰, 黄小波. 一株猪流行性腹泻病毒强毒株的分离与鉴定[J]. 畜牧兽医学报, 2024, 55(7): 3049-3063. |
[12] | 高一鸣, 陈国盛, 倪诗婷, 佟泽, 王豪男, 杨钒, 杨丽君, 莫玉鹏, 谭臣. 2022年中国南方部分地区猪肺炎支原体感染状况的调查与分析[J]. 畜牧兽医学报, 2024, 55(7): 3064-3074. |
[13] | 田思瑾, 赵佳琪, 王晓明, 王丽平, 黄金虎. 我国猪链球菌对常用抗菌药物耐药性的Meta分析[J]. 畜牧兽医学报, 2024, 55(7): 3163-3176. |
[14] | 吕英光, 焦广明, 桑金芳, 寇志鹏, 刘涛, 王月, 陆翔宇, 朴晨曦, 马亚军, 张建涛, 王洪斌. 脂肪间充质干细胞对巴马小型猪自体皮肤移植愈合过程的影响[J]. 畜牧兽医学报, 2024, 55(7): 3193-3204. |
[15] | 李媛媛, 王天玉, 李梦, 张文慧, 王英卉, 赵天瑞, 李浩洁, 赵阳飞, 王金明. 硒代蛋氨酸通过PINK1/Parkin介导的线粒体自噬缓解氟诱导的抑郁样行为[J]. 畜牧兽医学报, 2024, 55(7): 3213-3224. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||