| [1] | ZHANG W G,GAO X,ZHANG Y,et al.Genome-wide assessment of genetic diversity and population structure insights into admixture and introgression in Chinese indigenous cattle[J]. BMC Genet,2018,19(1):114. | 
																													
																						| [2] | QIU H,JU Z Y,CHANG Z J.A survey of cattle production in China[J]. World Animal Review,1993(76):12-18. | 
																													
																						| [3] | ZENG L,CHEN N,NING Q,et al. PRLH and SOD1 gene variations associated with heat tolerance in Chinese cattle[J]. Anim Genet,2018,49(5):447-451. | 
																													
																						| [4] | LIU Y Q,XU L Y,YANG L,et al.Discovery of genomic characteristics and selection signatures in southern Chinese local cattle[J]. Front Genet,2020,11:533052. | 
																													
																						| [5] | LU X B,ARBAB A A I,ZHANG Z P,et al.Comparative transcriptomic analysis of the pituitary gland between cattle breeds differing in growth:Yunling cattle and leiqiong cattle[J]. Animals (Basel),2020,10(8):1271. | 
																													
																						| [6] | BEAK S H,PARK S J,FASSAH D M,et al.Relationships among carcass traits,auction price,and image analysis traits of marbling characteristics in Korean cattle beef[J]. Meat Sci,2021,171:108268. | 
																													
																						| [7] | PICARD B,GAGAOUA M.Muscle fiber properties in cattle and their relationships with meat qualities:an overview[J]. J Agric Food Chem,2020,68(22):6021-6039. | 
																													
																						| [8] | ZHUANG X N,LIN Z K,XIE F,et al.Identification of circRNA-associated ceRNA networks using longissimus thoracis of pigs of different breeds and growth stages[J]. BMC Genomics,2022,23(1):294. | 
																													
																						| [9] | LEE S H,JOO S T,RYU Y C.Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality[J]. Meat Sci, 2010, 86(1):166-170. | 
																													
																						| [10] | WHITE A,O'SULLIVAN A,TROY D J,et al.Manipulation of the pre-rigor glycolytic behaviour of bovine M. longissimus dorsi in order to identify causes of inconsistencies in tenderness[J]. Meat Sci,2006,73(1):151-156. | 
																													
																						| [11] | GAGAOUA M,PICARD B,MONTEILS V.Assessment of cattle inter-individual cluster variability:the potential of continuum data from the farm-to-fork for ultimate beef tenderness management[J]. J Sci Food Agric,2019,99(8):4129-4141. | 
																													
																						| [12] | WICKS J,BELINE M,GOMEZ J F M,et al.Muscle energy metabolism,growth,and meat quality in beef cattle[J]. Agriculture (Basel),2019,9(9):195. | 
																													
																						| [13] | HUGHES J M,CLARKE F M,PURSLOW P P,et al.Meat color is determined not only by chromatic heme pigments but also by the physical structure and achromatic light scattering properties of the muscle[J]. Compr Rev Food Sci Food Saf,2020, 19(1):44-63. | 
																													
																						| [14] | PURSLOW P P,WARNER R D,CLARKE F M,et al.Variations in meat colour due to factors other than myoglobin chemistry; a synthesis of recent findings (invited review)[J]. Meat Sci,2020,159:107941. | 
																													
																						| [15] | LEFAUCHEUR L.Myofiber typing and pig meat production[J]. Slov Vet Zb,2001,38(1):5-33. | 
																													
																						| [16] | HE S Q,FU T T,YU Y,et al.IRE1α regulates skeletal muscle regeneration through Myostatin mRNA decay[J]. J Clin Invest, 2021,131(17):e143737. | 
																													
																						| [17] | COUDERT L,OSSENI A,GANGLOFF Y G,et al.The ESCRT-0 subcomplex component Hrs/Hgs is a master regulator of myogenesis via modulation of signaling and degradation pathways[J]. BMC Biol,2021,19(1):153. | 
																													
																						| [18] | ARCHACKA K,CIEMERYCH M A,FLORKOWSKA A,et al.Non-coding RNAs as regulators of myogenesis and postexercise muscle regeneration[J]. Int J Mol Sci,2021,22(21):11568. | 
																													
																						| [19] | KOPP F,MENDELL J T.Functional classification and experimental dissection of long noncoding RNAs[J]. Cell,2018, 172(3):393-407. | 
																													
																						| [20] | 李艳艳,顾志良.长链非编码RNA在肌肉发育中的作用研究进展[J].中国畜牧兽医,2014,41(11):232-236.LI Y Y,GU Z L.Research progress of long noncoding RNA in muscle development[J]. China Animal Husbandry & Veterinary Medicine,2014,41(11):232-236.(in Chinese) | 
																													
																						| [21] | LI J,YANG T T,TANG H F,et al.Inhibition of lncRNA MAAT controls multiple types of muscle atrophy by cis-and trans -regulatory actions[J]. Mol Ther,2021,29(3):1102-1119. | 
																													
																						| [22] | ZHANG P P,CHAO Z,ZHANG R,et al.Circular RNA regulation of myogenesis[J]. Cells,2019,8(8):885. | 
																													
																						| [23] | LI Z H,CAI B L,ABDALLA B A,et al. LncIRS1 controls muscle atrophy via sponging miR-15 family to activate IGF1-PI3K/AKT pathway[J]. J Cachexia Sarcopenia Muscle,2019,10(2):391-410. | 
																													
																						| [24] | ZHANG Z K,LI J,GUAN D G,et al.A newly identified lncRNA MAR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration[J]. J Cachexia Sarcopenia Muscle,2018,9(3):613-626. | 
																													
																						| [25] | HERMAN A B,TSITSIPATIS D,GOROSPE M.Integrated lncRNA function upon genomic and epigenomic regulation[J]. Mol Cell,2022,82(12):2252-2266. | 
																													
																						| [26] | HUANG C,DAI R F,MENG G Y,et al.Transcriptome-wide study of mRNAs and lncRNAs modified by m6A RNA methylation in the Longissimus dorsi muscle development of cattle-yak[J]. Cells,2022,11(22):3654. | 
																													
																						| [27] | HUANG C,GE F,MA X M,et al.Comprehensive analysis of mRNA,lncRNA,circRNA,and miRNA expression profiles and their ceRNA networks in the Longissimus dorsi muscle of cattle-yak and yak[J]. Front Genet,2021,12:772557. | 
																													
																						| [28] | JIANG R,LI H,HUANG Y Z,et al.Transcriptome profiling of lncRNA related to fat tissues of Qinchuan cattle[J]. Gene, 2020,742:144587. | 
																													
																						| [29] | LIU R L,HAN M X,LIU X X,et al.Genome-wide identification and characterization of long non-coding RNAs in longissimus dorsi skeletal muscle of shandong black cattle and luxi cattle[J]. Front Genet,2022,13:849399. | 
																													
																						| [30] | 黄定庆,王亮星.雷琼黄牛品种改良中存在的问题和对策[J].世界热带农业信息,2023(4):69-71.HUANG D Q,WANG L X. Problems and countermeasures in the improvement of Leiqiong cattle breed[J]. World Tropical Agriculture Information,2023(4):69-71.(in Chinese) | 
																													
																						| [31] | LIU Y Q,ZHAO G Y,LIN X J,et al.Genomic inbreeding and runs of homozygosity analysis of indigenous cattle populations in southern China[J]. PLoS One,2022,17(8):e0271718. | 
																													
																						| [32] | ANDERSON D M,ANDERSON K M,CHANG C L,et al.A micropeptide encoded by a putative long noncoding RNA regulates muscle performance[J]. Cell,2015,160(4):595-606. | 
																													
																						| [33] | BRIDGES M C,DAULAGALA A C,KOURTIDIS A.LNCcation:lncRNA localization and function[J]. J Cell Biol,2021, 220(2):e202009045. | 
																													
																						| [34] | QIAN X Y,ZHAO J Y,YEUNG P Y,et al.Revealing lncRNA structures and interactions by sequencing-based approaches[J]. Trends Biochem Sci,2019,44(1):33-52. | 
																													
																						| [35] | NOJIMA T,PROUDFOOT N J.Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics[J]. Nat Rev Mol Cell Biol, 2022, 23(6):389-406. | 
																													
																						| [36] | ZHOU T,DING J W,WANG X A,et al.Long noncoding RNAs and atherosclerosis[J]. Atherosclerosis,2016,248:51-61. | 
																													
																						| [37] | 任灵通,刘凌斌,李佳璐,等.肌肉发生相关长链非编码RNA研究进展[J].中国畜牧兽医,2021,48(8):2957-2965.REN L T,LIU L F,LI J L,et al.Research progress on long non-coding RNA associated with myogenesis[J]. China Animal Husbandry & Veterinary Medicine,2021,48(8):2957-2965.(in Chinese) | 
																													
																						| [38] | 郭志峰.长链非编码RNA作为竞争性内源RNA在Ⅰ期肺腺癌中的分析研究[D].福州:福建医科大学,2021.GUO Z F.Comprehensive analysis of dysregulated LncRNAs and their competing endogenous RNA network in stage I lung adenocarcinoma[D].Fuzhou:Fujian Medical University,2021.(in Chinese) | 
																													
																						| [39] | 叶峻宁,邓铭,薛慧雯,等.影响山羊胎儿肌肉发育mRNA和lncRNA的鉴定与分析[J].畜牧兽医学报, 2023, 54(3):989-1002.YE J N,DENG M,XUE H W,et al.Identification and analysis of mRNA and lncRNA affecting goat fetal muscle development[J]. Acta Veterinaria et Zootechnica Sinica,2023, 54(3):989-1002.(in Chinese) | 
																													
																						| [40] | 李文雅,牛欣然,任团辉,等.鸡骨骼肌中天然反义lncRNA VGLL 2-AS的鉴定及其与 VGLL 2的关系研究[J].畜牧兽医学报,2023,54(1):122-132.LI W Y,NIU X R,REN T H,et al.Identification of natural antisense lncRNA VGLL 2-AS in chicken skeletal muscle and its relationship with VGLL 2[J]. Acta Veterinaria et Zootechnica Sinica,2023,54(1):122-132.(in Chinese) | 
																													
																						| [41] | PEDROTTI S,GIUDICE J,DAGNINO-ACOSTA A,et al.The RNA-binding protein Rbfox1 regulates splicing required for skeletal muscle structure and function[J]. Hum Mol Genet,2015,24(8):2360-2374. | 
																													
																						| [42] | LUO L Q,MARTIN S C,PARKINGTON J,et al.HDAC4 controls muscle homeostasis through deacetylation of myosin heavy chain,PGC-1α,and Hsc70[J]. Cell Rep,2019,29(3):749-763.e12. | 
																													
																						| [43] | LI R,LI B,CAO Y,et al.Long non-coding RNA Mir22hg -derived miR-22-3p promotes skeletal muscle differentiation and regeneration by inhibiting HDAC4[J]. Mol Ther Nucleic Acids,2021,24:200-211. | 
																													
																						| [44] | ZHAO J,SHEN X X,CAO X A,et al.HDAC4 regulates the proliferation,differentiation and apoptosis of chicken skeletal muscle satellite cells[J]. Animals (Basel),2020,10(1):84. | 
																													
																						| [45] | QUIAT D,VOELKER K A,PEI J M,et al.Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6[J]. Proc Natl Acad Sci U S A,2011,108(25):10196-10201. | 
																													
																						| [46] | REGARD J B,ZHONG Z,WILLIAMS B O,et al.Wnt signaling in bone development and disease:making stronger bone with Wnts[J]. Cold Spring Harb Perspect Biol,2012,4(12):a007997. | 
																													
																						| [47] | RUDNICKI M A,WILLIAMS B O.Wnt signaling in bone and muscle[J]. Bone,2015,80:60-66. | 
																													
																						| [48] | HE Y,CHEN Y,ZHAO Q,et al.Roles of brain and muscle ARNT-like 1 and Wnt antagonist Dkk1 during osteogenesis of bone marrow stromal cells[J]. Cell Prolif,2013,46(6):644-653. | 
																													
																						| [49] | AISHWARYA R,ABDULLAH C S,REMEX N S,et al.Molecular characterization of skeletal muscle dysfunction in sigma 1 receptor (Sigmar1) knockout mice[J]. Am J Pathol,2022,192(1):160-177. | 
																													
																						| [50] | YE W D,DUAN Y,ZHANG W T,et al.Comprehensive analysis of hub mRNA,lncRNA and miRNA,and associated ceRNA networks implicated in grass carp (Ctenopharyngodon idella) growth traits[J]. Genomics,2021,113(6):4004-4014. | 
																													
																						| [51] | GLASS D J.Signalling pathways that mediate skeletal muscle hypertrophy and atrophy[J]. Nat Cell Biol,2003,5(2):87-90. | 
																													
																						| [52] | YU M L,WANG H,XU Y L,et al.Insulin-like growth factor-1(IGF-1) promotes myoblast proliferation and skeletal muscle growth of embryonic chickens via the PI3K/Akt signalling pathway[J]. Cell Biol Int,2015,39(8):910-922. | 
																													
																						| [53] | STITT T N,DRUJAN D,CLARKE B A,et al.The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors[J]. Mol Cell,2004,14(3):395-403. | 
																													
																						| [54] | KUMAR A,XIE L T,TA C M,et al.SWELL1 regulates skeletal muscle cell size,intracellular signaling,adiposity and glucose metabolism[J]. Elife,2020,9:e58941. | 
																													
																						| [55] | SHEN X M,TANG J,JIANG R,et al.CircRILPL1 promotes muscle proliferation and differentiation via binding miR-145 to activate IGF1R/PI3K/AKT pathway[J]. Cell Death Dis,2021,12(2):142. | 
																													
																						| [56] | BENGAL E,AVIRAM S,HAYEK T.p38 MAPK in glucose metabolism of skeletal muscle:beneficial or harmful?[J]. Int J Mol Sci,2020,21(18):6480. | 
																													
																						| [57] | SOMWAR R,KOTERSKI S,SWEENEY G,et al.A dominant-negative p38 MAPK mutant and novel selective inhibitors of p38 MAPK reduce insulin-stimulated glucose uptake in 3T3-L1 adipocytes without affecting GLUT4 translocation[J]. J Biol Chem,2002,277(52):50386-50395. | 
																													
																						| [58] | LEE J,HONG F,KWON S,et al.Activation of p38 MAPK induces cell cycle arrest via inhibition of Raf/ERK pathway during muscle differentiation[J]. Biochem Biophys Res Commun,2002,298(5):765-771. |