畜牧兽医学报 ›› 2021, Vol. 52 ›› Issue (10): 2762-2771.doi: 10.11843/j.issn.0366-6964.2021.010.007
张仕泓, 王少林*
收稿日期:
2021-01-19
出版日期:
2021-10-23
发布日期:
2021-10-27
通讯作者:
王少林,主要从事药理基因组、毒理基因组、微生物相关宏基因组和生物信息学研究,E-mail:shaolinwang@cau.edu.cn
作者简介:
张仕泓(1994-),男,浙江温州人,硕士,主要从事产气荚膜梭菌耐药性研究,E-mail:zsh_sam@163.com
基金资助:
ZHANG Shihong, WANG Shaolin*
Received:
2021-01-19
Online:
2021-10-23
Published:
2021-10-27
摘要: 细菌耐药性是21世纪人类面临的重大公共卫生安全问题之一。产气荚膜梭菌作为一种重要的人兽共患病原菌,能引起人和动物食物中毒、气性坏疽、坏死性肠炎等多种疾病。随着临床抗菌药物的广泛使用,其耐药性也在不断发展,严重威胁着公共卫生安全和养殖业的健康发展。本文将从产气荚膜梭菌近十年来的耐药性流行情况、耐药机制及耐药基因传播机制两个方面进行归纳总结,旨在为产气荚膜梭菌耐药性的防控提供理论依据。
中图分类号:
张仕泓, 王少林. 动物源产气荚膜梭菌耐药性研究进展[J]. 畜牧兽医学报, 2021, 52(10): 2762-2771.
ZHANG Shihong, WANG Shaolin. Research Progress on Antimicrobial Resistance of Clostridium perfringens of Animal Origins[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(10): 2762-2771.
[1] | WELCH U. Nuttall:A gas-producing bacillus (Bacillus aerogenes capsulatus, Nov, Spec.) capable of rapid development in the blood-vessels after death[J]. Bull Johns Hopkins Hosp Baltim, 1892, 3:81-91. |
[2] | MARKEY B, LEONARD F, ARCHAMBAULT M, et al. Clinical Veterinary microbiology,[M]. 2nd ed. British:2013:215. |
[3] | KIU R, HALL L J. An update on the human and animal enteric pathogen Clostridium perfringens[J]. Emerg Microbes Infect, 2018, 7(1):1-15. |
[4] | DOLAN G P, FOSTER K, LAWLER J, et al. An epidemiological review of gastrointestinal outbreaks associated with Clostridium perfringens, North East of England, 2012-2014[J]. Epidemiol Infect, 2015, 144(7):1386-1393. |
[5] | Foodborne Germs and Illnesses[EB/OL].[2020-05-18]. https://www.cdc.gov/foodsafety/foodborne-germs.html. |
[6] | 张爽, 张巍巍, 李颖, 等. 一起由产气荚膜梭菌和肠聚集性大肠埃希菌共感染导致的聚集性腹泻事件病原学分析[J]. 中国人兽共患病学报, 2021, 37(2):183-187.ZHANG S, ZHANG W W, LI Y, et al. Pathogenic analysis of a cluster diarrhea event caused by co-infection with Clostridium perfringens and enteroaggregative Escherichia coli[J]. Chinese Journal of Zoonoses, 2021, 37(2):183-187. (in Chinese) |
[7] | 麻美芬, 崔艳, 黄抱抱, 等. 一起产气荚膜梭菌食物中毒事件现场流行病学调查[J]. 预防医学, 2018, 30(6):624-625,628.MA M F, CUI Y, HUANG B B, et al. Epidemiological investigation on a food poisoning incident of Clostridium perfringens[J]. Preventive Medicine, 2018, 30(6):624-625,628. (in Chinese) |
[8] | BHATTACHARYA A, SHANTIKUMAR S, BEAUFOY D, et al. Outbreak of Clostridium perfringens food poisoning linked to leeks in cheese sauce:an unusual source[J]. Epidemiol Infect, 2020, 148:e43. |
[9] | MELLOU K, KYRITSI M, CHRYSOSTOMOU A, et al. Clostridium perfringens foodborne outbreak during an athletic event in northern Greece, June 2019[J]. Int J Environ Res Public Health, 2019, 16(20):3967. |
[10] | ABDELRAHIM A M, RADOMSKI N, DELANNOY S, et al. Large-scale genomic analyses and toxinotyping of Clostridium perfringens implicated in foodborne outbreaks in France[J]. Front Microbiol, 2019, 10:777. |
[11] | LEUNG V H, PHAN Q, COSTA C E, et al. Notes from the field:Clostridium perfringens outbreak at a catered lunch-Connecticut, September 2016[J]. Mmwr Morb Mortal Wkly Rep, 2017, 66(35):940-941. |
[12] | WALKER H N, LIEW K C, ADAMS V, et al. Necrotising enterocolitis caused by Clostridium perfringens:a life-threatening manifestation of a common foodborne infection[J]. Med J Aust, 2020, 213(3):114-115. |
[13] | 董卫超, 刘凌, 杜向党. 动物源产气荚膜梭菌耐药性的研究进展[J]. 中国人兽共患病学报, 2012, 28(11):1130-1132, 1154.DONG W C, LIU L, DU X D. Research progress on antimicrobial resistance in Clostridium perfringens of animal origin[J]. Chinese Journal of Zoonoses, 2012, 28(11):1130-1132, 1154. (in Chinese) |
[14] | CDC. Antibiotic resistance threats in the United States, 2019[R]. Atlanta, GA:U. S. Department of Health and Human Services, CDC, 2019. |
[15] | EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control). The European union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018[R]. EFSA Journal, 2020. |
[16] | Finnish veterinary antimicrobial resistance monitoring and consumption of antimicrobial agents authors and institutions participating in making the FINRES-Vet report[R]. Helsinki, Finland:Finnish Food Authority, 2020. |
[17] | NORM/NORM-VET 2019.Usage of antimicrobial agents and occurrence of antimicrobial resistance in Norway[R]. Tromsø/Oslo, 2020. |
[18] | Swedres-Svarm 2019.Sales of antibiotics and occurrence of antibiotic resistance in Sweden[R]. Solna/Uppsala, 2019. |
[19] | DANMAP 2019-Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark[R]. Denmark:National Food Institute, Technical University of Denmark, 2019. |
[20] | 蒋曙光, 李娜, 李建军. 羊源性产气荚膜梭菌的药物敏感性检测[J]. 草食家畜, 2013(4):46-48.JIANG S G, LI N, LI J J. Drug susceptibility testing of sheep-origins Clostridium perfringens[J] Grass-feeding Livestock, 2013(4):46-48. (in Chinese) |
[21] | FAN Y C, WANG C L, WANG C, et al. Incidence and antimicrobial susceptibility to Clostridium perfringens in premarket broilers in Taiwan[J]. Avian Dis, 2016, 60(2):444-449. |
[22] | ZHANG T F, ZHANG W T, AI D Y, et al. Prevalence and characterization of Clostridium perfringens in broiler chickens and retail chicken meat in central China[J]. Anaerobe, 2018, 54:100-103. |
[23] | 艾地云, 邵华斌, 张腾飞, 等. 鸡产气荚膜梭菌的分离鉴定及药敏试验[J]. 动物医学进展, 2014, 35(6):149-152.AI D Y, SHAO H B, ZHANG T F, et al. Isolation, identification and drug sensitivity test of Clostridium perfringens from broiler chickens[J]. Progress in Veterinary Medicine, 2014, 35(6):149-152. (in Chinese) |
[24] | 曹忠君. 某鸡场鸡产气荚膜梭菌的耐药性试验[J]. 畜牧业环境, 2020(7):89.CAO Z J. Antimicrobial resistance test of Clostridium perfringens in a chicken farm[J]. Animal industry and environment, 2020(7):89. (in Chinese) |
[25] | XIU L, LIU Y, WU W, et al. Prevalence and multilocus sequence typing of Clostridium perfringens isolated from 4 duck farms in Shandong province, China[J]. Poult Sci, 2020, 99(10):5105-5117. |
[26] | LI J Y, ZHOU Y Q, YANG D W, et al. Prevalence and antimicrobial susceptibility of Clostridium perfringens in chickens and pigs from Beijing and Shanxi, China[J]. Vet Microbiol, 2021, 252:108932. |
[27] | 张娜. 羊源产气荚膜梭菌的分离鉴定及耐药性分析[D]. 咸阳:西北农林科技大学, 2019:26.ZHANG N. Isolation, identification and drug resistance analysis of Clostridium perfringens from sheep[D]. Xianyang:Northwest A & F University, 2019:26. (in Chinese) |
[28] | KHADEMI F, SAHEBKAR A. The prevalence of antibiotic-resistant Clostridium species in Iran:a meta-analysis[J]. Pathog Glob Health, 2019, 113(2):58-66. |
[29] | 2018年中国兽用抗菌药使用情况报告[J]. 兽医公报, 2019, 21(8):57-59.Report on the use of veterinary antibiotics of China in 2018[J]. Official Veterinary Bulletin, 2019, 21(8):57-59. (in Chinese) |
[30] | WEI B, CHA S Y, ZHANG J F, et al. Antimicrobial susceptibility and association with toxin determinants in Clostridium perfringens isolates from chickens[J]. Microorganisms, 2020, 8(11):1825. |
[31] | 郑晓丽. 规模化鸡场健康鸡群产气荚膜梭菌的分离、鉴定及遗传多样性研究[D]. 雅安:四川农业大学, 2009:29.ZHENG X L. Isolation, identification and genetic diversity of Clostridium perfringens of healthy broiler chickens from commercial farms[D]. Yaan:Sichuan Agricultural University, 2009:29. (in Chinese) |
[32] | 吕长辉. 青岛地区规模化兔场产气荚膜梭菌流行株毒素型、遗传多样性和耐药性调查研究[D]. 青岛:山东农业大学, 2013:35.LÜ C H. Study of toxin types, genetic diversity and antimicrobial resistance of Clostridium perfringens isolated from infected rabbits in Qingdao area[D]. Qingdao:Qingdao Agricultural University, 2013:35. (in Chinese) |
[33] | 王艳红, 李昊宇, 韩立君, 等. 肉类熟食品中产气荚膜梭菌污染及耐药状况调查[J]. 中国卫生检验杂志, 2014, 24(20):2993-2994.WANG Y H, LI H Y, HAN L J. Report on Clostridium perfringens contaminations and drug tolerance in cooked meat[J]. Chinese Journal of Health Laboratory Technology, 2014, 24(20):2993-2994. (in Chinese) |
[34] | ANJU K, KARTHIK K, DIVYA V, et al. Toxinotyping and molecular characterization of antimicrobial resistance in Clostridium perfringens isolated from different sources of livestock and poultry[J]. Anaerobe, 2021, 67:102298. |
[35] | PARK Y J, KIM S, OH J Y, et al. Characterization of Clostridium perfringens isolates obtained from 2010 to 2012 from chickens with necrotic enteritis in Korea[J]. Poult Sci, 2015, 94(6):1158-1164. |
[36] | GHARAIBEH S, RIFAI R A, AL-MAJALI A. Molecular typing and antimicrobial susceptibility of Clostridium perfringens from broiler chickens[J]. Anaerobe, 2010, 16(6):586-589. |
[37] | NGAMWONGSATIT B, TANOMSRIDACHCHAI W, SUTHIENKUL O, et al. Multidrug resistance in Clostridium perfringens isolated from diarrheal neonatal piglets in Thailand[J]. Anaerobe, 2016, 38:88-93. |
[38] | MASSACCI F R, CUCCO L, FORTI K, et al. Susceptibility to Clostridium perfringens antimicrobial agents, isolated from cattle with clostridial symptoms[J]. Sanita Pubblica Vet, 2014, 15(82):25-31. |
[39] | GOBELI S, BERSET C, BURGENER I A, et al. Antimicrobial susceptibility of canine Clostridium perfringens strains from Switzerland[J]. Schweiz Arch Tierheilkd, 2012, 154(6):247-250. |
[40] | DERONGS L, DRUILHE C, ZIEBAL C, et al. Characterization of Clostridium perfringens isolates collected from three agricultural biogas plants over a one-year period[J]. Int J Environ Res Public Health, 2020, 17(15):5450. |
[41] | GAD W, HAUCK R, KRVGER M, et al. In vitro determination of antibiotic sensitivities of Clostridium perfringens isolates from layer flocks in Germany[J]. Arch Geflugelk, 2012, 76(4):234-238. |
[42] | GAD W, HAUCK R, KRVGER M, et al. Determination of antibiotic sensitivities of Clostridium perfringens isolates from commercial turkeys in Germany in vitro[J]. Arch Geflugelk, 2011, 75(2):80-83. |
[43] | ÁLVAREZ-PÉREZ S, BLANCO J L, PELÁEZ T, et al. Water sources in a zoological park harbor genetically diverse strains of Clostridium perfringens type A with decreased susceptibility to metronidazole[J]. Microb Ecol, 2016, 72(4):783-790. |
[44] | MWANGI S, TIMMONS J, FITZ-COY S, et al. Characterization of Clostridium perfringens recovered from broiler chicken affected by necrotic enteritis[J]. Poult Sci, 2019, 98(1):128-135. |
[45] | SILVA R O S, JUNIOR F C F, ROMERO M V, et al. Genotyping and antimicrobial susceptibility of Clostridium perfringens isolated from Tinamidae, Cracidae and Ramphastidae species in Brazil[J]. Ciência Rural, 2014, 44(3):486-491. |
[46] | SLAVIĆ-D, BOERLIN P, FABRI M, et al. Antimicrobial susceptibility of Clostridium perfringens isolates of bovine, chicken, porcine, and turkey origin from Ontario[J]. Can J Vet Res, 2011, 75(2):89-97. |
[47] | DEL MAR GAMBOA-CORONADO M, MAU-INCHAUSTEGUI S, RODRÍGUEZ-CAVALLINI E. Caracterización molecular y resistencia antimicrobiana de aislamientos de Clostridium perfringens de diferentes orígenes en Costa Rica[J]. Rev De Biol Trop, 2011, 59(4):1479-1485. |
[48] | SALVARANI F M, SILVA R O S, PIRES P S, et al. Antimicrobial susceptibility of Clostridium perfringens isolated from piglets with or without diarrhea in Brazil[J]. Braz J Microbiol, 2012, 43(3):1030-1033. |
[49] | LLANCO L, NAKANO V, FERREIRA A J P, et al. Toxinotyping and antimicrobial susceptibility of Clostridium perfringens isolated from broiler chickens with necrotic enteritis[J]. Int J Microbiol Res, 2012, 4(7):290-294. |
[50] | CHOPRA I, ROBERTS M. Tetracycline antibiotics:Mode of action, applications, molecular biology, and epidemiology of bacterial resistance[J]. Microbiol Mol Biol Rev, 2001, 65(2):232-260. |
[51] | PARK M, ROONEY A P, HECHT D W, et al. Phenotypic and genotypic characterization of tetracycline and minocycline resistance in Clostridium perfringens[J]. Arch Microbiol, 2010, 192(10):803-810. |
[52] | JOHNSTONE F R C, COCKCROFT W H. Clostridium welchii resistance to tetracycline[J]. Lancet, 1968, 291(7544):660-661. |
[53] | ROOD J I, BUDDLE J R, WALES A J, et al. The occurrence of antibiotic resistance in Clostridium perfringens from pigs[J]. Aust Vet J, 1985, 62(8):276-279. |
[54] | SOGE O O, TIVOLI L D, MESCHKE J S, et al. A conjugative macrolide resistance gene, mef(A), in environmental Clostridium perfringens carrying multiple macrolide and/or tetracycline resistance genes[J]. J Appl Microbiol, 2009, 106(1):34-40. |
[55] | LYRAS D, ROOD J I. Genetic organization and distribution of tetracycline resistance determinants in Clostridium perfringens[J]. Antimicrob Agents Chemother, 1996, 40(11):2500-2504. |
[56] | SLOAN J, MCMURRY L M, LYRAS D, et al. The Clostridium perfringens Tet P determinant comprises two overlapping genes:tetA(P), which mediates active tetracycline efflux, and tetB(P), which is related to the ribosomal protection family of tetracycline-resistance determinants[J]. Mol Microbiol, 1994, 11(2):403-415. |
[57] | ROBERTS M C. Update on acquired tetracycline resistance genes[J]. FEMS Microbiol Lett, 2005, 245(2):195-203. |
[58] | HAN X, DU X D, SOUTHEY L, et al. Functional analysis of a bacitracin resistance determinant located on ICE Cp1, a novel Tn 916-like element from a conjugative plasmid in Clostridium perfringens[J]. Antimicrob Agents Chemother, 2015, 59(11):6855-6865. |
[59] | CHARLEBOIS A, JALBERT L A, HAREL J, et al. Characterization of genes encoding for acquired bacitracin resistance in Clostridium perfringens[J]. PLoS One, 2012, 7(9):e44449. |
[60] | MANSON J M, KEIS S, SMITH J M B, et al. Acquired bacitracin resistance in Enterococcus faecalis is mediated by an ABC transporter and a novel regulatory protein, BcrR[J]. Antimicrob Agents Chemother, 2004, 48(10):3743-3748. |
[61] | PODLESEK Z, COMINO A, HERZOG-VELIKONJA B, et al. Bacillus licheniformis bacitracin-resistance ABC transporter:relationship to mammalian multidrug resistance[J]. Mol Microbiol, 1995, 16(5):969-976. |
[62] | BAQUERO F, REIG M. Resistance of anaerobic bacteria to antimicrobial agents in Spain[J]. Eur J Clin Microbiol Infect Dis, 1992, 11(11):1016-1020. |
[63] | MARTEL A, DEVRIESE L A, CAUWERTS K, et al. Susceptibility of Clostridium perfringens strains from broiler chickens to antibiotics and anticoccidials[J]. Avian Pathol, 2004, 33(1):3-7. |
[64] | BOZDOGAN B, BERREZOUGA L, KUO M S, et al. A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025[J]. Antimicrob Agents Chemother, 1999, 43(4):925-929. |
[65] | BRISSON-NOEL A, COURVALIN P. Nucleotide sequence of gene linA encoding resistance to lincosamides in Staphylococcus haemolyticus[J]. Gene, 1986, 43(3):247-253. |
[66] | KLAUS T, SCHÖPPER H, HUBER S. Effects of chronic stress during pregnancy on maternal performance in the guinea pig (Cavia aperea f. porcellus)[J]. Behav Processes, 2013, 94:83-88. |
[67] | BANNAM T L, ROOD J I. Relationship between the Clostridium perfringens catQ gene-product and chloramphenicol acetyltransferases from other bacteria[J]. Antimicrob Agents Chemother, 1991, 35(3):471-476. |
[68] | ADAMS V, LYRAS D, FARROW K A, et al. The clostridial mobilisable transposons[J]. Cell Mol Life Sci CMLS, 2002, 59(12):2033-2043. |
[69] | 王盈盈. 恶唑烷酮耐药基因optrA的流行特征及耐药机制研究[D]. 北京:中国农业大学, 2020:5-6.WANG Y Y. Study on the prevalence characteristics and mechanism of oxazolidinone resistance gene optrA[D]. Beijing:China Agricultural University, 2020:5-6. (in Chinese) |
[70] | WANG Y, LV Y, CAI J C, et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin[J]. J Antimicrob Chemother, 2015, 70(8):2182-2190. |
[71] | HÖLZEL C S, HARMS K S, SCHWAIGER K, et al. Resistance to linezolid in a porcine Clostridium perfringens strain carrying a mutation in the rplD gene encoding the ribosomal protein L4[J]. Antimicrob Agents Chemother, 2010, 54(3):1351-1353. |
[72] | WOLTER N, SMITH A M, FARRELL D J, et al. Novel mechanism of resistance to oxazolidinones, macrolides, and chloramphenicol in ribosomal protein L4 of the Pneumococcus[J]. Antimicrob Agents Chemother, 2005, 49(8):3554-3557. |
[73] | ZHOU Y Q, LI J Y, SCHWARZ S, et al. Mobile oxazolidinone/phenicol resistance gene optrA in chicken Clostridium perfringens[J]. J Antimicrob Chemother, 2020, 75(10):3067-3069. |
[74] | CLANCY J, PETITPAS J, DIB-HAJJ F, et al. Molecular cloning and functional analysis of a novel macrolide-resistance determinant, mefA, from Streptococcus pyogenes[J]. Mol Microbiol, 1996, 22(5):867-879. |
[75] | SIMÖES M, SIMÖES L C, VIEIRA M J. A review of current and emergent biofilm control strategies[J]. LWT-Food Sci Technol, 2010, 43(4):573-583. |
[76] | 张晓芬. 产气荚膜梭菌生物被膜形成分子机制的研究[D]. 西宁:青海大学, 2018:11-13.ZHANG X F. Study on the molecular mechanism of the biofilm formation of Clostridium perfringens[D]. Xining:Qinghai University, 2018:11-13. (in Chinese) |
[77] | VARGA J J, THERIT B, MELVILLE S B. Type IV Pili and the CcpA protein are needed for maximal biofilm formation by the gram-positive anaerobic pathogen Clostridium perfringens[J]. Infect Immun, 2008, 76(11):4944-4951. |
[78] | CHARLEBOIS A, JACQUES M, ARCHAMBAULT M. Biofilm formation of Clostridium perfringens and its exposure to low-dose antimicrobials[J]. Front Microbiol, 2014, 5:183. |
[79] | CHARLEBOIS A, JACQUES M, BOULIANNE M, et al. Tolerance of Clostridium perfringens biofilms to disinfectants commonly used in the food industry[J]. Food Microbiol, 2017, 62:32-38. |
[80] | ANDERSSON D. The biological cost of mutational antibiotic resistance:any practical conclusions?[J]. Curr Opin Microbiol, 2006, 9(5):461-465. |
[81] | VARDAKAS K Z, KONSTANTELIAS A A, LOIZIDIS G, et al. Risk factors for development of Clostridium difficile infection due to BI/NAP1/027 strain:a meta-analysis[J]. Int J Inf Dis, 2012, 16(11):e768-e773. |
[82] | PARK M, SUTHERLAND J B, KIM J N, et al. Effect of Fluoroquinolone Resistance Selection on the Fitness of Three Strains of Clostridium perfringens[J]. Microb Drug Resist, 2013, 19(6):421-427. |
[83] | 中华人民共和国卫生部. 多重耐药菌医院感染预防与控制技术指南(试行):卫办医政发 |
[2011] 5号[S/OL]. (2011-01-26)[2021-09-06] http://www.nhc.gov.cn/cms-search/xxgk/getManuscriptXxgk.htm?id=50487.National Health Commission of the People's Republic of China. Technical guidelines for the prevention and control of multidrug-resistance organism[S/OL]. http://www.nhc.gov.cn/cms-search/xxgk/getManuscriptXxgk.htm?id=50487. (in Chinese) | |
[84] | LIU Y, XIU L, MIAO Z M, et al. Occurrence and multilocus sequence typing of Clostridium perfringens isolated from retail duck products in Tai'an region, China[J]. Anaerobe, 2020, 62:102102. |
[85] | 刘煜. 山东省泰安市零售鸭产品中产气荚膜梭菌的分离鉴定、基因分型及耐药性研究[D]. 泰安:山东农业大学, 2019:25.LIU Y. Antimicrobial resistance and genotyping of Clostridium perfringens isolated from retail duck products in Tai'an, Shandong province[D]. Tai'an:Shandong Agricultural University, 2019:25. (in Chinese) |
[86] | 周宇晴. 北京和山西地区鸡、猪源产气荚膜梭菌抗菌药物敏感性调查[D]. 北京:中国农业大学, 2019:8-9.ZHOU Y. Antimicrobial susceptibility of Clostridium perfringens isolated from chickens and pigs in Beijing and Shanxi areas[D]. Beijing:China Agricultural University, 2019:8-9. (in Chinese) |
[87] | 王春梅, 何启盖, 操继跃. 细菌多重耐药泵的研究进展[J]. 畜牧兽医学报, 2011, 42(4):455-467.WANG C M, HE Q G, CAO J Y. Multidrug efflux systems involved in resistance to antibacterial drugs[J]. Acta Veterinaria et Zootechnica Sinica, 2011, 42(4):455-467. (in Chinese) |
[88] | MA Y H, YE G S. Determination of multidrug resistance mechanisms in Clostridium perfringens type A isolates using RNA sequencing and 2D-electrophoresis[J]. Braz J Med Biol Res, 2018, 51(8):e7044. |
[1] | 田睿, 徐思翔, 谢烽, 刘广锦, 王刚, 李庆霞, 代蕾, 谢国信, 张琼文, 陆亚警, 王光文, 王金秀, 张炜. 黄牛源产气荚膜梭菌分离株基因组的生物信息学分析[J]. 畜牧兽医学报, 2024, 55(4): 1707-1715. |
[2] | 周文惠, 包红霞, 王俊豪, 黄远玲, 王文惠, 郝海红. 甘草查尔酮A与三种抗生素联用对产气荚膜梭菌感染小鼠的治疗作用[J]. 畜牧兽医学报, 2024, 55(1): 334-345. |
[3] | 陈曦, 王一, 王佳丽, 杨新, 宋军科, 赵光辉. 毒害艾美耳球虫和产气荚膜梭菌双重PCR检测方法的建立[J]. 畜牧兽医学报, 2023, 54(9): 3985-3990. |
[4] | 曾成容, 王娜, 毕文文, 梅世慧, 何广霞, 张峻杰, 陈泽, 文明, 周碧君. A型产气荚膜梭菌感染鸭回肠代谢组学分析[J]. 畜牧兽医学报, 2023, 54(6): 2555-2569. |
[5] | 王美慧, 钟震宇, 白加德, 单云芳, 程志斌, 张庆勋, 孟玉萍, 董玉兰, 郭青云. C型产气荚膜梭菌感染鹿肠道中关键基因和途径的转录组分析[J]. 畜牧兽医学报, 2023, 54(5): 2147-2157. |
[6] | 何绿琴, 闫雪锋, 文心田, 曹三杰, 黄小波, 伍锐, 赵勤, 文翼平. 副猪嗜血杆菌qseB、qseC双基因缺失株的构建及生物学特性[J]. 畜牧兽医学报, 2022, 53(2): 529-537. |
[7] | 黄晓宇, 杨巧丽, 闫尊强, 王鹏飞, 石海仁, 滚双宝. C型产气荚膜梭菌实验感染仔猪肠道circRNA的表达特征[J]. 畜牧兽医学报, 2022, 53(11): 4058-4070. |
[8] | 吴克, 冯航, 王娟, 杨增岐. 关中奶山羊源D型产气荚膜梭菌全基因组序列测定及其分子特征分析[J]. 畜牧兽医学报, 2022, 53(11): 3967-3974. |
[9] | 张思雨, 王玉炯, 曾瑾. C型产气荚膜梭菌外毒素致小鼠肠道损伤的转录组分析[J]. 畜牧兽医学报, 2022, 53(10): 3570-3581. |
[10] | 臧江华, 安一娜, 王婧, 王科智, 杨静静, 高敏, 冯岚迪, 谭姝瑜, 胡艳欣, 董彦君. 鸡源A型产气荚膜梭菌致病性及药物疗效分析[J]. 畜牧兽医学报, 2022, 53(10): 3561-3569. |
[11] | 吴立婷, 刘半红, 田源, 王娟, 包红朵, 周艳, 庞茂达, 王冉, 张辉. 产气荚膜梭菌噬菌体鉴定及其环境消减效果评价[J]. 畜牧兽医学报, 2022, 53(10): 3550-3560. |
[12] | 杜吉革, 朱真, 徐中清, 李倩琳, 姚文生, 李启红, 印春生, 杨柳, 付利芝, 陈小云, 刘莹, 薛麒. 重组产气荚膜梭菌β毒素突变体的表达与免疫保护性分析[J]. 畜牧兽医学报, 2020, 51(11): 2794-2801. |
[13] | 杜吉革, 朱真, 薛麒, 李启红, 印春生, 彭小兵, 姚文生, 康凯, 陈小云. 产气荚膜梭菌重组ε毒素突变体的免疫保护力评价[J]. 畜牧兽医学报, 2018, 49(4): 777-785. |
[14] | 王莹莹,乔艺然,赵蕾,刘鹏,任玉东,李广兴,黄小丹,张瑞莉,杨贵君. 产气荚膜梭菌重组NetB毒素细胞毒性作用研究[J]. 畜牧兽医学报, 2016, 47(5): 1018-1025. |
[15] | 倪学勤;郑晓丽;曾东;Joshua Gong;宋振银;. 采用AFLP和ERIC-PCR技术研究规模化鸡场健康鸡群中产气荚膜梭菌的遗传多样性[J]. 畜牧兽医学报, 2009, 40(5): 717-724. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||