畜牧兽医学报 ›› 2021, Vol. 52 ›› Issue (1): 9-18.doi: 10.11843/j.issn.0366-6964.2021.002
李阳光1,2,3, 吴英1,2,3, 汪铭书1,2,3, 程安春1,2,3*
收稿日期:
2020-06-18
出版日期:
2021-01-23
发布日期:
2021-01-19
通讯作者:
程安春,主要从事动物传染病学研究,E-mail:chenganchun@vip.163.com
作者简介:
李阳光(1996-),女,山东梁山人,硕士生,主要从事鸭疱疹病毒研究,E-mail:1638215361@qq.com;吴英(1986-),四川营山人,讲师,博士,主要从事鸭疱疹病毒研究,E-mail:wuy@sicau.edu.cn。李阳光和吴英为同等贡献作者
基金资助:
LI Yangguang1,2,3, WU Ying1,2,3, WANG Mingshu1,2,3, CHENG Anchun1,2,3*
Received:
2020-06-18
Online:
2021-01-23
Published:
2021-01-19
摘要: 疱疹病毒(herpesvirus)是一类有囊膜结构的双链DNA病毒,典型结构由双链DNA基因组、衣壳(capsid)、皮层(tegument)和囊膜(envelope)组成。其家族庞大,迄今共发现了100多种,分为甲型(α)、乙型(β)、丙型(γ)疱疹病毒亚科。疱疹病毒宿主分布极其广泛,可感染两栖类、禽类、哺乳类、灵长类和人类,主要侵害皮肤、黏膜以及神经组织,严重影响着人类及其他动物的健康。感染细胞蛋白22(infected cell protein 22,ICP22)是US1或其同源基因编码的多功能蛋白,可与细胞和/或病毒成分相互作用而广泛发挥作用,如参与病毒潜伏感染期的建立、与RNA聚合酶Ⅱ(RNA polymerase Ⅱ,RNA Pol Ⅱ)相互作用影响病毒和宿主基因转录、影响病毒诱导分子伴侣富集域(virus-induced chaperone-enriched,VICE)区域的形成以及子代病毒粒子的核出芽、涉及细胞凋亡、自噬与抗病毒反应等。本文就疱疹病毒US1及同源基因编码蛋白ICP22的研究进展作一综述,以期为深入开展ICP22与病毒和宿主蛋白相互作用参与病毒复制和致病过程中的机制研究提供参考,对动物疱疹病毒、特别是以ICP22作为靶标的新药研究具有一定的参考价值。
中图分类号:
李阳光, 吴英, 汪铭书, 程安春. 疱疹病毒ICP22蛋白研究进展[J]. 畜牧兽医学报, 2021, 52(1): 9-18.
LI Yangguang, WU Ying, WANG Mingshu, CHENG Anchun. Research Progress of Herpes Virus ICP22 Protein[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(1): 9-18.
[1] | OWEN D J, CRUMP C M, GRAHAM S C. Tegument assembly and secondary envelopment of alphaherpesviruses[J]. Viruses, 2015, 7(9):5084-5114. |
[2] | LEFKOWITZ E J, DEMPSEY D M, HENDRICK-SON R C, et al. Virus taxonomy:the database of the International Committee on Taxonomy of Viruses (ICTV)[J]. Nucleic Acids Res, 2018, 46(D1):D708-D717. |
[3] | MATUNDAN H H, JAGGI U, WANG S H, et al. Loss of ICP22 in HSV-1 elicits immune infiltration and maintains stromal keratitis despite reduced primary and latent virus infectivity[J]. Invest Ophthalmol Vis Sci, 2019, 60(10):3398-3406. |
[4] | DEPLEDGE D P, OUWENDIJK W J D, SADAOKA T, et al. A spliced latency-associated VZV transcript maps antisense to the viral transactivator gene 61[J]. Nat Commun, 2018, 9(1):1167. |
[5] | HART J, MACHUGH N D, SHELDRAKE T, et al. Identification of immediate early gene products of bovine herpes virus 1(BHV-1) as dominant antigens recognized by CD8 T cells in immune cattle[J]. J Gen Virol, 2017, 98(7):1843-1854. |
[6] | BOUMART I, FIGUEROA T, DAMBRINE G, et al. GaHV-2 ICP22 protein is expressed from a bicistronic transcript regulated by three GaHV-2 microRNAs[J]. J Gen Virol, 2018, 99(9):1286-1300. |
[7] | CYMERYS J, SŁOŃSKA A, BRZEZICKA J, et al. Replication kinetics of neuropathogenic and non-neuropathogenic equine herpesvirus type 1(EHV-1) strains in primary murine neurons and ED cell line[J]. Pol J Vet Sci, 2016, 19(4):777-784. |
[8] | CAI M S, JIANG S, ZENG Z C, et al. Probing the nuclear import signal and nuclear transport molecular determinants of PRV ICP22[J]. Cell Biosci, 2016, 6:3. |
[9] | GUO Y F, CHENG A C, WANG M S, et al. Purification of anatid herpesvirus 1 particles by tangential-flow ultrafiltration and sucrose gradient ultracentrifugation[J]. J Virol Methods, 2009, 161(1):1-6. |
[10] | JIA R Y, CHENG A C, WANG M S, et al. Development and evaluation of an antigen-capture ELISA for detection of the UL24 antigen of the duck enteritis virus, based on a polyclonal antibody against the UL24 expression protein[J]. J Virol Methods, 2009, 161(1):38-43. |
[11] | ZHAO L C, CHENG A C, WANG M S, et al. Characterization of codon usage bias in the dUTPase gene of duck enteritis virus[J]. Prog Natl Sci, 2008, 18(9):1069-1076. |
[12] | CHANG H, CHENG A C, WANG M S, et al. Complete nucleotide sequence of the duck plague virus gE gene[J]. Arch Virol, 2009, 154(1):163-165. |
[13] | 马云潮, 程安春, 汪铭书, 等. 重组鸭肠炎病毒载体疫苗研究进展[J]. 畜牧兽医学报, 2017, 48(11):2015-2022.MA Y C, CHENG A C, WANG M S, et al. Progress of recombinant duck enteritis virus-vectored vaccines[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(11):2015-2022. (in Chinese) |
[14] | DEMBOWSKI J A, DREMEL S E, DELUCA N A. Replication-Coupled recruitment of viral and cellular factors to herpes simplex virus type 1 replication forks for the maintenance and expression of viral genomes[J]. PLoS Pathog, 2017, 13(1):e1006166. |
[15] | WIDENER R W, WHITLEY R J. Herpes simplex virus[J]. Handb Clin Neurol, 2014, 123:251-263. |
[16] | GINN S L, ALEXANDER I E, EDELSTEIN M L, et al. Gene therapy clinical trials worldwide to 2012-an update[J]. J Gene Med, 2013, 15(2):65-77. |
[17] | RICE S A, DAVIDO D J. HSV-1 ICP22:hijacking host nuclear functions to enhance viral infection[J]. Future Microbiol, 2013, 8(3):311-321. |
[18] | MAJIMA R, SHINDOH K, YAMAGUCHI T, et al. Characterization of a thienylcarboxamide derivative that inhibits the transactivation functions of cytomegalovirus IE2 and varicella zoster virus IE62[J]. Antiviral Res, 2017, 140:142-150. |
[19] | ZERBONI L, SEN N, OLIVER S L, et al. Molecular mechanisms of varicella zoster virus pathogenesis[J]. Nat Rev Microbiol, 2014, 12(3):197-210. |
[20] | LI M L, ZHAO Z Y, CHEN J H, et al. Characterization of synonymous codon usage bias in the pseudorabies virus US1 gene[J]. Virol Sin, 2012, 27(5):303-315. |
[21] | ROBINSON K E, MEERS J, GRAVEL J L, et al. The essential and non-essential genes of bovine herpesvirus 1[J]. J Gen Virol, 2008, 89(11):2851-2863. |
[22] | AHN B, ZHANG Y F, OSTERRIEDER N, et al. Properties of an equine herpesvirus 1 mutant devoid of the internal inverted repeat sequence of the genomic short region[J]. Virology, 2011, 410(2):327-335. |
[23] | WU Y, CHENG A C, WANG M S, et al. Complete genomic sequence of Chinese virulent duck enteritis virus[J]. J Virol, 2012, 86(10):5965. |
[24] | LI Y G, WU Y, WANG M S, et al. Duplicate US1 genes of duck enteritis virus encode a non-essential immediate early protein localized to the nucleus[J]. Front Cell Infect Microbiol, 2020, 9:463. |
[25] | WU Y, CHENG A C, WANG M S, et al. Comparative genomic analysis of duck enteritis virus strains[J]. J Virol, 2012, 86(24):13841-13842. |
[26] | LIN F S, DING Q, GUO H, et al. The herpes simplex virus type 1 infected cell protein 22[J]. Virol Sin, 2010, 25(1):1-7. |
[27] | OSTLER J B, HARRISON K S, SCHROEDER K, et al. The glucocorticoid receptor (GR) stimulates herpes simplex virus 1 productive infection, in part because the infected cell protein 0(ICP0) promoter is cooperatively transactivated by the GR and Krüppel-like transcription factor 15[J]. J Virol, 2019, 93(6):e02063-18. |
[28] | MARUZURU Y, FUJII H, OYAMA M, et al. Roles of p53 in herpes simplex virus 1 replication[J]. J Virol, 2013, 87(16):9323-9332. |
[29] | AMBAGALA A P N, COHEN J I. Varicella-zoster virus IE63, a major viral latency protein, is required to inhibit the alpha interferon-induced antiviral response[J]. J Virol, 2007, 81(15):7844-7851. |
[30] | AMBAGALA A P, BOSMA T, ALI M A, et al. Varicella-zoster virus immediate-early 63 protein interacts with human antisilencing function 1 protein and alters its ability to bind histones h3. 1 and h3. 3[J]. J Virol, 2009, 83(1):200-209. |
[31] | MUELLER N H, WALTERS M S, MARCUS R A, et al. Identification of phosphorylated residues on varicella-zoster virus immediate-early protein ORF63[J]. J Gen Virol, 2010, 91(Pt 5):1133-1137. |
[32] | STELZ G, RVCKER E, ROSORIUS O, et al. Identification of two nuclear import signals in the α-Gene product ICP22 of herpes simplex virus 1[J]. Virology, 2002, 295(2):360-370. |
[33] | BASTIAN T W, RICE S A. Identification of sequences in herpes simplex virus type 1 ICP22 that influence RNA polymerase II modification and viral late gene expression[J]. J Virol, 2009, 83(1):128-139. |
[34] | LEISENFELDER S A, KINCHINGTON P R, MOFFAT J F. Cyclin-dependent kinase 1/Cyclin B1 phosphorylates varicella-zoster virus IE62 and is incorporated into virions[J]. J Virol, 2008, 82(24):12116-12125. |
[35] | REESE T A. Coinfections:another variable in the herpesvirus latency-reactivation dynamic[J]. J Virol, 2016, 90(12):5534-5537. |
[36] | DEPLEDGE D P, SADAOKA T, OUWENDIJK W J D. Molecular aspects of varicella-zoster virus latency[J]. Viruses, 2018, 10(7):349. |
[37] | BAIRD N L, ZHU S Y, PEARCE C M, et al. Current in vitro models to study varicella zoster virus latency and reactivation[J]. Viruses, 2019, 11(2):103. |
[38] | YAO Y X, VASOYA D, KGOSANA L, et al. Activation of gga-miR-155 by reticuloendotheliosis virus T strain and its contribution to transformation[J]. J Gen Virol, 2017, 98(4):810-820. |
[39] | SHERIDAN R M, FONG N, D'ALESSANDRO A, et al. Widespread backtracking by RNA pol II is a major effector of gene activation, 5' pause release, termination, and transcription elongation rate[J]. Mol Cell, 2019, 73(1):107-118. |
[40] | LEI G, WU W J, LIU L D, et al. Herpes simplex virus 1 ICP22 inhibits the transcription of viral gene promoters by binding to and blocking the recruitment of P-TEFb[J]. PLoS One, 2012, 7(9):e45749. |
[41] | OU M, SANDRI-GOLDIN R M. Inhibition of cdk9 during herpes simplex virus 1 infection impedes viral transcription[J]. PLoS One, 2013, 8(10):e79007. |
[42] | ZABOROWSKA J, BAUMLI S, LAITEM C, et al. Herpes simplex virus 1(HSV-1) ICP22 protein directly interacts with cyclin-dependent kinase (CDK)9 to inhibit RNA polymerase II transcription elongation[J]. PLoS One, 2014, 9(9):e107654. |
[43] | FOX H L, DEMBOWSKI J A, DELUCA N A. A herpesviral immediate early protein promotes transcription elongation of viral transcripts[J]. mBio, 2017, 8(3):e00745-17. |
[44] | RICE S A, LONG M C, LAM V, et al. Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase II and establishment of the normal viral transcription program[J]. J Virol, 1995, 69(9):5550-5559. |
[45] | VAN OPDENBOSCH N, VAN DEN BROEKE C, DE REGGE N, et al. The IE180 protein of pseudorabies virus suppresses phosphorylation of translation initiation factor eIF2α[J]. J Virol, 2012, 86(13):7235-7240. |
[46] | ZERBONI L, SOBEL R A, RAMACHANDRAN V, et al. Expression of varicella-zoster virus immediate-early regulatory protein IE63 in neurons of latently infected human sensory ganglia[J]. J Virol, 2010, 84(7):3421-3430. |
[47] | STOEGER T, ADLER H. "Novel" triggers of herpesvirus reactivation and their potential health relevance[J]. Front Microbiol, 2019, 9:3207. |
[48] | CHARVAT R A, BREITENBACH J E, AHN B, et al. The UL4 protein of equine herpesvirus 1 is not essential for replication or pathogenesis and inhibits gene expression controlled by viral and heterologous promoters[J]. Virology, 2011, 412(2):366-377. |
[49] | 高俊. 马疱疹病毒1型潜伏相关转录体的转录调控机制研究[D]. 呼和浩特:内蒙古农业大学, 2016.GAO J. Transcriptional regulation mechanism research of equine herpesvirus 1 latency associated transcripts[D]. Hohhot:Inner Mongolia Agricultural University, 2016. (in Chinese) |
[50] | ZHANG Y F, CHARVAT R A, KIM S K, et al. The EHV-1 UL4 protein that tempers viral gene expression interacts with cellular transcription factors[J]. Virology, 2014, 449:25-34. |
[51] | DERBIGNY W A, KIM S S, JANG H K, et al. EHV-1 EICP22 protein sequences that mediates its physical interaction with the immediate-early protoin are not sufficient to enhance the trans-activation activity of the IE protein[J].Virus Res, 2002, 84(1-2):1-15. |
[52] | YOU Y, CHENG A C, WANG M S, et al. The suppression of apoptosis by α-herpesvirus[J]. Cell Death Dis, 2017, 8(4):e2749. |
[53] | JING Y C, WU Y, SUN K F, et al. Role of duck plague virus glycoprotein C in viral adsorption:absence of specific interactions with cell surface heparan sulfate[J]. J Integr Agric, 2017, 16(5):1145-1152. |
[54] | ZHANG D X, LAI M Y, CHENG A C, et al. Molecular characterization of the duck enteritis virus US10 protein[J]. Virol J, 2017, 14(1):183. |
[55] | YOU Y, LIU T, WANG M S, et al. Author correction:duck plague virus glycoprotein J is functional but slightly impaired in viral replication and cell-to-cell spread[J]. Sci Rep, 2018, 8(1):6488. |
[56] | FUNK C, OTT M, RASCHBICHLER V, et al. The herpes simplex virus protein pUL31 escorts nucleocapsids to sites of nuclear egress, a process coordinated by its N-terminal domain[J]. PLoS Pathog, 2015, 11(6):e1004957. |
[57] | ARII J, TAKESHIMA K, MARUZURU Y, et al. Roles of the interhexamer contact site for hexagonal lattice formation of the herpes simplex virus 1 nuclear egress complex in viral primary envelopment and replication[J]. J Virol, 2019, 93(14):e00498-19. |
[58] | MARUZURU Y, SHINDO K, LIU Z M, et al. Role of herpes simplex virus 1 immediate early protein ICP22 in viral nuclear egress[J]. J Virol, 2014, 88(13):7445-7454. |
[59] | ZHAO C K, HE T Q, XU Y, et al. Molecular characterization and antiapoptotic function analysis of the duck plague virus Us5 gene[J]. Sci Rep, 2019, 9(1):4851. |
[60] | LAI Y L, ZENG N, WANG M S, et al. The VP3 protein of duck hepatitis A virus mediates host cell adsorption and apoptosis[J]. Sci Rep, 2019, 9(1):16783. |
[61] | SUN D, WEN X J, WANG M S, et al. Apoptosis and autophagy in picornavirus infection[J]. Front Microbiol, 2019, 10:2032. |
[62] | JORGENSEN I, RAYAMAJHI M, MIAO E A. Programmed cell death as a defence against infection[J]. Nat Rev Immunol, 2017, 17(3):151-164. |
[63] | YU X L, HE S D. The interplay between human herpes simplex virus infection and the apoptosis and necroptosis cell death pathways[J]. Virol J, 2016, 13(1):77. |
[64] | 游韶平, 刘岩, 樊建勇, 等. 单纯疱疹病毒Ⅱ型感染细胞蛋白22在Vero细胞中的表达特性及其对细胞凋亡的影响[J]. 实用医学杂志, 2014, 30(3):364-366.YOU S P, LIU Y, FAN J Y, et al. Expression characteristics of herpes simplex virus type II infected cell protein 22 in Vero cells and its effect on cell apoptosis[J]. The Journal of practical medicine, 2014, 30(3):364-366. (in Chinese) |
[65] | WU J X, LIU H H, HUANG H, et al. p53-dependent pathway and the opening of mPTP mediate the apoptosis of co-cultured sertoli-germ cells induced by microcystin-LR[J]. Environ Toxicol, 2019, 34(10):1074-1084. |
[66] | JAMES S F, MAHALINGAM R, GILDEN D. Does apoptosis play a role in varicella zoster virus latency and reactivation?[J]. Viruses, 2012, 4(9):1509-1514. |
[67] | COLLIER A E, WEK R C, SPANDAU D F. Translational repression protects human keratinocytes from UVB-induced apoptosis through a discordant eIF2 kinase stress response[J]. J Invest Dermatol, 2015, 135(10):2502-2511. |
[68] | DENTON D, XU T Q, KUMAR S. Autophagy as a pro-death pathway[J]. Immunol Cell Biol, 2015, 93(1):35-42. |
[69] | WU X L, JIA R Y, WANG M S, et al. Downregulation of microRNA-30a-5p contributes to the replication of duck enteritis virus by regulating beclin-1-mediated autophagy[J]. Virol J, 2019, 16(1):144. |
[70] | WANG S H, XU X L, HU Y L, et al. Sotetsuflavone induces autophagy in non-small cell lung cancer through blocking PI3K/Akt/mTOR signaling pathway in vivo and in vitro[J]. Front Pharmacol, 2019, 10:1460. |
[71] | CHEN H B, DUO Y H, HU B, et al. PICT-1 triggers a pro-death autophagy through inhibiting rRNA transcription and AKT/mTOR/p70S6K signaling pathway[J]. Oncotarget, 2016, 7(48):78747-78763. |
[72] | SALAS-CÁRDENAS S P, OLAYA-GALÁN N N, FERNÁNDEZ K, et al. Decreased rotavirus infection of MA104 cells via probiotic extract binding to Hsc70 and ß3 integrin receptors[J]. Univ Sci, 2018, 23(2):219-239. |
[73] | MOSTAFA H H, DAVIDO D J. Herpes simplex virus 1 ICP22 but not US1. 5 is required for efficient acute replication in mice and VICE domain formation[J]. J Virol, 2013, 87(24):13510-13519. |
[74] | ADLAKHA M, LIVINGSTON C M, BEZSONOVA I, et al. The Herpes simplex virus 1 immediate early protein ICP22 is a functional mimic of a cellular J protein[J]. J Virol, 2020, 94(4):e01564-19. |
[1] | 董书餐, 毛帅翔, 伍翠莹, 李耀坤, 孙宝丽, 郭勇庆, 邓铭, 刘德武, 柳广斌. 雄激素受体抑制剂恩杂鲁胺对山羊卵泡颗粒细胞增殖凋亡的影响[J]. 畜牧兽医学报, 2024, 55(5): 2022-2031. |
[2] | 王吉英, 尹蕊如, 谢星, 王海燕, 刘胡栋, 胡辉, 熊祺琰, 冯志新, 邵国青, 于岩飞. 猪肺炎支原体乳酸脱氢酶在诱导猪支气管上皮细胞凋亡中的作用[J]. 畜牧兽医学报, 2024, 55(5): 2195-2205. |
[3] | 李秋云, 田芯源, 廖文圣, 张焕容, 任玉鹏, 杨发龙, 朱江江, 向华. SOCS2对山羊鼻甲骨细胞增殖、周期及凋亡的影响[J]. 畜牧兽医学报, 2024, 55(5): 2226-2240. |
[4] | 李菲菲, 张晨淼, 童津津, 蒋林树. 线粒体自噬调节NLRP3炎症小体活性改善动物健康的作用机制[J]. 畜牧兽医学报, 2024, 55(4): 1446-1455. |
[5] | 蓝昕蕊, 赵宝宝, 张碧菡, 林晓语, 马会明, 王勇胜. β-谷甾醇对猪卵母细胞体外成熟和胚胎发育的影响[J]. 畜牧兽医学报, 2024, 55(4): 1629-1637. |
[6] | 李钰浚, 何翃闳, 杨丽雪, 杨小耿, 李键, 张慧珠. 线粒体自噬调控哺乳动物胚胎发育的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 905-912. |
[7] | 虎巧燕, 翟相钦, 李一丹, 韩家乐, 雷初朝, 党瑞华. Bta-miR-101对牛睾丸支持细胞增殖、凋亡及分泌的影响[J]. 畜牧兽医学报, 2024, 55(3): 1040-1051. |
[8] | 霍元楠, 邱美佳, 张姣姣, 杨炜蓉, 王鲜忠. 精氨酸及其代谢物抑制热应激诱导仔猪支持细胞凋亡的机制[J]. 畜牧兽医学报, 2024, 55(2): 587-597. |
[9] | 邱文粤, 苏依曼, 叶嘉莉, 章心婷, 庞晓玥, 王荣梅, 谢子茂, 张辉, 唐兆新, 苏荣胜. 积雪草酸通过调控细胞凋亡和自噬缓解脂多糖诱导肉鸡急性肾损伤的研究[J]. 畜牧兽医学报, 2024, 55(2): 809-821. |
[10] | 陈松彪, 刘飞飞, 尚珂, 余祖华, 何雷, 魏颖, 陈建, 张春杰, 程相朝, 丁轲. 病毒感染与宿主抗感染免疫之间“博弈”——凋亡、坏死和焦亡分子机制[J]. 畜牧兽医学报, 2024, 55(1): 59-70. |
[11] | 段香茹, 康佳, 杨若晨, 单新雨, 李太春, 赵雯, 张英杰, 刘月琴. L-半胱氨酸对绵羊卵巢颗粒细胞增殖、凋亡和类固醇激素分泌的影响[J]. 畜牧兽医学报, 2024, 55(1): 179-191. |
[12] | 刘悦阳, 李梦媛, 聂雪伊, 马亚博, 侯雨欣, 马伯利, 杨易, 徐金瑞. 钙结合蛋白S100A4对BCG感染THP-1细胞自噬的调控作用[J]. 畜牧兽医学报, 2024, 55(1): 311-322. |
[13] | 王栋梁, 任静, 郝琴琴, 李鹏飞. 牛CART基因核心启动子鉴定及转录调控分析[J]. 畜牧兽医学报, 2023, 54(9): 3689-3699. |
[14] | 宋美君, 郝科兴, 海思妤, 陈岩, 王静, 胡广东. SRIF-14对绵羊子宫内膜上皮细胞增殖和凋亡的影响[J]. 畜牧兽医学报, 2023, 54(8): 3325-3334. |
[15] | 徐茜, 杨柏高, 张航, 冯肖艺, 郝海生, 杜卫华, 朱化彬, 张培培, 赵学明. β-烟酰胺单核苷酸对牛卵母细胞脂滴含量及冷冻效果的影响[J]. 畜牧兽医学报, 2023, 54(8): 3348-3357. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||