畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (1): 59-70.doi: 10.11843/j.issn.0366-6964.2024.01.007
陈松彪1,2,3, 刘飞飞1,2, 尚珂1,2, 余祖华1,2, 何雷1,2, 魏颖1,2, 陈建1,2, 张春杰1,2, 程相朝1,2*, 丁轲1,2,3*
收稿日期:
2023-01-04
出版日期:
2024-01-23
发布日期:
2024-01-24
通讯作者:
程相朝,主要从事动物病理学研究,E-mail:chengxch@126.com;丁轲,主要从事动物微生态研究,E-mail:keding19@163.com
作者简介:
陈松彪(1990-),男,河南信阳人,博士,主要从事动物病理学研究,E-mail:chensongbiao@126.com;刘飞飞(1998-),女,河南濮阳人,硕士生,主要从事动物病理学研究,E-mail:2544772902@qq.com。陈松彪和刘飞飞是同等贡献作者
基金资助:
CHEN Songbiao1,2,3, LIU Feifei1,2, SHANG Ke1,2, YU Zuhua1,2, HE Lei1,2, WEI Ying1,2, CHEN Jian1,2, ZHANG Chunjie1,2, CHENG Xiangchao1,2*, DING Ke1,2,3*
Received:
2023-01-04
Online:
2024-01-23
Published:
2024-01-24
摘要: 细胞死亡是宿主抗病毒感染免疫的重要组成部分,病毒感染可引起不同形式宿主细胞死亡,包括溶解性和非溶解性两种细胞死亡类型。这两种细胞死亡类型不仅能够消除病毒感染细胞,而且还能够利用炎症因子释放进一步促进宿主先天和适应性免疫进程。反之,病毒也发展出不同规避机制来抑制宿主细胞死亡进而促进自身感染。本文就病毒感染与宿主抗病毒感染免疫之间的"博弈"——凋亡、坏死和焦亡调控机制研究进展进行综述,旨在为深入理解病毒的分子致病机制以及开发新的抗病毒策略提供参考资料。
中图分类号:
陈松彪, 刘飞飞, 尚珂, 余祖华, 何雷, 魏颖, 陈建, 张春杰, 程相朝, 丁轲. 病毒感染与宿主抗感染免疫之间“博弈”——凋亡、坏死和焦亡分子机制[J]. 畜牧兽医学报, 2024, 55(1): 59-70.
CHEN Songbiao, LIU Feifei, SHANG Ke, YU Zuhua, HE Lei, WEI Ying, CHEN Jian, ZHANG Chunjie, CHENG Xiangchao, DING Ke. Molecular Mechanism of the “Battle” between Virus Infection and Host Antiviral Immunity-Apoptosis, Necroptosis and Pyroptosis[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 59-70.
[1] | 王 冰, 吴红霞, 仇华吉, 等. 病毒工厂:病毒复制的关键场所[J]. 微生物学报, 2021, 61(7):1873-1881.WANG B, WU H X, QIU H J, et al. Viral factory:a critical site for virus replication[J]. Acta Microbiologica Sinica, 2021, 61(7):1873-1881. (in Chinese) |
[2] | GALLUZZI L, BUQUÉ A, KEPP O, et al. Immunogenic cell death in cancer and infectious disease[J]. Nat Rev Immunol, 2017, 17(2):97-111. |
[3] | YATIM N, CULLEN S, ALBERT M L. Dying cells actively regulate adaptive immune responses[J]. Nat Rev Immunol, 2017, 17(4):262-275. |
[4] | HUO J Y, XIE W J, FAN X Y, et al. Pyroptosis, apoptosis, and necroptosis molecular subtype derived prognostic signature universal applicable for gastric cancer-a large sample and multicenter retrospective analysis[J]. Comput Biol Med, 2022, 149:106037. |
[5] | NAILWAL H, CHAN F K M. Necroptosis in anti-viral inflammation[J]. Cell Death Differ, 2019, 26(1):4-13. |
[6] | WHYTE P, BUCHKOVICH K J, HOROWITZ J M, et al. Association between an oncogene and an anti-oncogene:the adenovirus E1A proteins bind to the retinoblastoma gene product[J]. Nature, 1988, 334(6178):124-129. |
[7] | DEBBAS M, WHITE E. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B[J]. Genes Dev, 1993, 7(4):546-554. |
[8] | STEAIN M, BAKER M O D G, PHAM C L L, et al. Varicella zoster virus encodes a viral decoy RHIM to inhibit cell death[J]. PLoS Pathog, 2020, 16(7):e1008473. |
[9] | VERBURG S G, LELIEVRE R M, WESTERVELD M J, et al. Viral-mediated activation and inhibition of programmed cell death[J]. PLoS Pathog, 2022, 18(8):e1010718. |
[10] | NGUYEN L N, KANNEGANTI T D. PANoptosis in viral infection:the missing puzzle piece in the cell death field[J]. J Mol Biol, 2022, 434(4):167249. |
[11] | 张 博, 邓 静, 万 全, 等. 细胞焦亡与自噬、凋亡、坏死的新认知[J]. 中国兽医学报, 2021, 41(12):2511-2520.ZHANG B, DENG J, WAN Q, et al. New cognition of pyrosis, autophagy, apoptosis and necrosis[J]. Chinese Journal of Veterinary Science, 2021, 41(12):2511-2520. (in Chinese) |
[12] | TAIT S W G, GREEN D R. Mitochondria and cell death:outer membrane permeabilization and beyond[J]. Nat Rev Mol Cell Biol, 2010, 11(9):621-632. |
[13] | WILSON N S, DIXIT V, ASHKENAZI A. Death receptor signal transducers:nodes of coordination in immune signaling networks[J]. Nat Immunol, 2009, 10(4):348-355. |
[14] | 付礼胜, 侯 宁, 王晓燕, 等. SPF雏鸡感染REV后中枢免疫器官细胞凋亡及相关因子的变化[J]. 畜牧兽医学报, 2017, 48(10):1983-1989.FU L S, HOU N, WANG X Y, et al. Changes of cell apoptosis and relevant factor in central immune organs of SPF chicks infected with reticuloendotheliosis virus[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(10):1983-1989. (in Chinese) |
[15] | ZHOU X C, JIANG W B, LIU Z S, et al. Virus infection and death receptor-mediated apoptosis[J]. Viruses, 2017, 9(11):316. |
[16] | RESTIVO I, ATTANZIO A, GIARDINA I C, et al. Cigarette smoke extract induces p38 MAPK-initiated, Fas-mediated eryptosis[J]. Int J Mol Sci, 2022, 23(23):14730. |
[17] | 葛桂阳, 栾美慧, 宫庆龙, 等. 水貂阿留申病毒诱导CrFK细胞凋亡信号通路的研究[J]. 中国预防兽医学报, 2021, 43(10):1089-1095.GE G Y, LUAN M H, GONG Q L, et al. Study on apoptosis signal pathway of CrFK cells apoptosis induced by Aleutian mink disease virus[J]. Chinese Journal of Preventive Veterinary Medicine, 2021, 43(10):1089-1095. (in Chinese) |
[18] | CASTEDO M, FERRI K F, BLANCO J, et al. Human immunodeficiency virus 1 envelope glycoprotein complex-induced apoptosis involves mammalian target of rapamycin/Fkbp12-rapamycin-associated protein-mediated P53 phosphorylation[J]. J Exp Med, 2001, 194(8):1097-1110. |
[19] | PERFETTINI J L, ROUMIER T, CASTEDO M, et al. NF-κB and p53 are the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope[J]. J Exp Med, 2004, 199(5):629-640. |
[20] | LI S F, LI H, ZHANG Y L, et al. SFTSV infection induces BAK/BAX-dependent mitochondrial DNA release to trigger NLRP3 inflammasome activation[J]. Cell Rep, 2020, 30(13):4370-4385. e7. |
[21] | KNOWLTON J J, DERMODY T S, HOLM G H. Apoptosis induced by mammalian reovirus is beta interferon (IFN) independent and enhanced by IFN regulatory factor 3-and NF-κB-dependent expression of noxa[J]. J Virol, 2012, 86(3):1650-1660. |
[22] | HOLZERLAND J, FÉNÉANT L, BANADYGA L, et al. BH3-only sensors bad, noxa and puma are key regulators of tacaribe virus-induced apoptosis[J]. PLoS Pathog, 2020, 16(10):e1008948. |
[23] | AWEYA J J, SZE C W, BAYEGA A, et al. NS5B induces up-regulation of the BH3-only protein, BIK, essential for the hepatitis C virus RNA replication and viral release[J]. Virology, 2015, 474:41-51. |
[24] | JIN H L, XIAO C, ZHAO G, et al. Induction of immature dendritic cell apoptosis by foot and mouth disease virus is an integrin receptor mediated event before viral infection[J]. J Cell Biochem, 2007, 102(4):980-991. |
[25] | PEARCE A F, LYLES D S. Vesicular stomatitis virus induces apoptosis primarily through Bak rather than Bax by inactivating Mcl-1 and Bcl-XL[J]. J Virol, 2009, 83(18):9102-9112. |
[26] | NAGATA S. Apoptosis and clearance of apoptotic cells[J]. Annu Rev Immunol, 2018, 36:489-517. |
[27] | ZHOU Q, SNIPAS S, ORTH K, et al. Target protease specificity of the viral serpin CrmA. analysis of five caspases[J]. J Biol Chem, 1997, 272(12):7797-7800. |
[28] | SURAWEERA C D, HINDS M G, KVANSAKUL M. Poxviral strategies to overcome host cell apoptosis[J]. Pathogens, 2020, 10(1):6. |
[29] | ZHOU Q, KREBS J F, SNIPAS S J, et al. Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex[J]. Biochemistry, 1998, 37(30):10757-10765. |
[30] | XU G Z, CIRILLI M, HUANG Y H, et al. Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex[J]. Nature, 2001, 410(6827):494-497. |
[31] | FLETCHER-ETHERINGTON A, NOBRE L, NIGHTINGALE K, et al. Human cytomegalovirus protein pUL36:a dual cell death pathway inhibitor[J]. Proc Natl Acad Sci U S A, 2020, 117(31):18771-18779. |
[32] | DALEY-BAUER L P, ROBACK L, CROSBY L N, et al. Mouse cytomegalovirus M36 and M45 death suppressors cooperate to prevent inflammation resulting from antiviral programmed cell death pathways[J]. Proc Natl Acad Sci U S A, 2017, 114(13):E2786-E2795. |
[33] | MOSTAFA H H, THOMPSON T W, KONEN A J, et al. Herpes simplex virus 1 mutant with point mutations in UL39 is impaired for acute viral replication in mice, establishment of latency, and explant-induced reactivation[J]. J Virol, 2018, 92(7):e01654-17. |
[34] | GUO H Y, OMOTO S, HARRIS P A, et al. Herpes simplex virus suppresses necroptosis in human cells[J]. Cell Host Microbe, 2015, 17(2):243-251. |
[35] | BITTEL M, KREMER A E, STVRZL M, et al. Modulation of the extrinsic cell death signaling pathway by viral flip induces acute-death mediated liver failure[J]. Cell Death Dis, 2019, 10(12):878. |
[36] | THOME M, SCHNEIDER P, HOFMANN K, et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors[J]. Nature, 1997, 386(6624):517-521. |
[37] | 刘军亭, 王 涛, 陈妍卉, 等. VDAC蛋白在病毒诱导的细胞凋亡中作用的研究进展[J]. 中国预防兽医学报, 2022, 44(7):792-797.LIU J T, WANG T, CHEN Y H, et al. Research progress on the role of VDAC protein in virus-induced apoptosis[J]. Chinese Journal of Preventive Veterinary Medicine, 2022, 44(7):792-797. (in Chinese) |
[38] | FANG Y J, PENG K. Regulation of innate immune responses by cell death-associated caspases during virus infection[J]. FEBS J, 2022, 289(14):4098-4111. |
[39] | ZHANG Y Q, XU M Q, ZHANG X Y, et al. MAPK/c-jun signaling pathway contributes to the upregulation of the anti-apoptotic proteins Bcl-2 and Bcl-xL induced by Epstein-Barr virus-encoded BARF1 in gastric carcinoma cells[J]. Oncol Lett, 2018, 15(5):7537-7544. |
[40] | ANDERTON E, YEE J, SMITH P, et al. Two Epstein-barr virus (EBV) oncoproteins cooperate to repress expression of the proapoptotic tumour-suppressor Bim:clues to the pathogenesis of Burkitt's lymphoma[J]. Oncogene, 2008, 27(4):421-433. |
[41] | 陈永臣, 温金燕, 祁丹丹, 等. 乙型肝炎病毒上调的lnc-HUR1抑制肝癌细胞凋亡[J]. 生物工程学报, 2022, 38(9):3501-3514.CHEN Y C, WEN J Y, QI D D, et al. HBV-upregulated Lnc-HUR1 inhibits the apoptosis of liver cancer cells[J]. Chinese Journal of Biotechnology, 2022, 38(9):3501-3514. (in Chinese) |
[42] | TAN Y X, TAN T H P, LEE M J R, et al. Induction of apoptosis by the severe acute respiratory syndrome coronavirus 7a protein is dependent on its interaction with the Bcl-XL protein[J]. J Virol, 2007, 81(12):6346-6355. |
[43] | YU E, ZHAI D Y, JIN C F, et al. Structural determinants of caspase-9 inhibition by the vaccinia virus protein, F1L[J]. J Biol Chem, 2011, 286(35):30748-30758. |
[44] | ZHAI D Y, YU E, JIN C F, et al. Vaccinia virus protein F1L is a caspase-9 inhibitor[J]. J Biol Chem, 2010, 285(8):5569-5580. |
[45] | ILKOW C S, GOPING I S, HOBMAN T C. The rubella virus capsid is an anti-apoptotic protein that attenuates the pore-forming ability of Bax[J]. PLoS Pathog, 2011, 7(2):e1001291. |
[46] | HE J, MI S, QIN X W, et al. Tiger frog virus ORF104R interacts with cellular VDAC2 to inhibit cell apoptosis[J]. Fish Shellfish Immunol, 2019, 92:889-896. |
[47] | CHU Z L, WANG C Y, TANG Q X, et al. Newcastle disease virus V protein inhibits cell apoptosis and promotes viral replication by targeting CacyBP/SIP[J]. Front Cell Infect Microbiol, 2018, 8:304. |
[48] | SOLÀ-RIERA C, GUPTA S, LJUNGGREN H G, et al. Orthohantaviruses belonging to three phylogroups all inhibit apoptosis in infected target cells[J]. Sci Rep, 2019, 9(1):834. |
[49] | SAMSON A L, GARNISH S E, HILDEBRAND J M, et al. Location, location, location:a compartmentalized view of TNF-induced necroptotic signaling[J]. Sci Signal, 2021, 14(668):eabc6178. |
[50] | NEWTON K, WICKLIFFE K E, DUGGER D L, et al. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis[J]. Nature, 2019, 574(7778):428-431. |
[51] | OBERST A, DILLON C P, WEINLICH R, et al. Catalytic activity of the caspase-8-FLIPL complex inhibits RIPK3-dependent necrosis[J]. Nature, 2011, 471(7338):363-367. |
[52] | ZHANG T, YIN C R, BOYD D F, et al. Influenza virus Z-RNAs induce ZBP1-mediated necroptosis[J]. Cell, 2020, 180(6):1115-1129. e13. |
[53] | VERDONCK S, NEMEGEERJ, VANDENABEELE P, et al. Viral manipulation of host cell necroptosis and pyroptosis [J]. Trend in Microbiol, 2022, 30(6):593-605. |
[54] | PHAM C L, SHANMUGAM N, STRANGE M, et al. Viral M45 and necroptosis-associated proteins form heteromeric amyloid assemblies[J]. EMBO Rep, 2019, 20(2):e46518. |
[55] | HUANG Z, WU S Q, LIANG Y J, et al. RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice[J]. Cell Host Microbe, 2015, 17(2):229-242. |
[56] | LIU Z J, NAILWAL H, RECTOR J, et al. A class of viral inducer of degradation of the necroptosis adaptor RIPK3 regulates virus-induced inflammation[J]. Immunity, 2021, 54(2):247-258. e7. |
[57] | LIU X L, LI Y S, PENG S L, et al. Epstein-Barr virus encoded latent membrane protein 1 suppresses necroptosis through targeting RIPK1/3 ubiquitination[J]. Cell Death Dis, 2018, 9(2):53. |
[58] | PETRIE E J, SANDOW J J, LEHMANN W I L, et al. Viral MLKL homologs subvert necroptotic cell death by sequestering cellular RIPK3[J]. Cell Rep, 2019, 28(13):3309-3319. e5. |
[59] | KOEHLER H, COTSMIRE S, LANGLAND J, et al. Inhibition of DAI-dependent necroptosis by the Z-DNA binding domain of the vaccinia virus innate immune evasion protein, E3[J]. Proc Natl Acad Sci U S A, 2017, 114(43):11506-11511. |
[60] | UPTON J W, KAISER W J, MOCARSKI E S. Virus inhibition of RIP3-dependent necrosis[J]. Cell Host Microbe, 2010, 7(4):302-313. |
[61] | 高泽乾, 朱学亮, 张志东, 等. 病毒感染激活炎症小体的分子机制[J]. 畜牧兽医学报, 2016, 47(11):2167-2174.GAO Z Q, ZHU X L, ZHANG Z D, et al. The mechanisms of inflammasomes activation by viral components[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(11):2167-2174. (in Chinese) |
[62] | 张 琛, 宋正然, 王培刚. 细胞焦亡在黄病毒致病机制中的作用[J]. 微生物学报, 2022, 62(2):476-488.ZHANG C, SONG Z R, WANG P G. Research progress on the role of pyroptosis in flavivirus infection[J]. Acta Microbiologica Sinica, 2022, 62(2):476-488. (in Chinese) |
[63] | TSU B V, BEIERSCHMITT C, RYAN A P, et al. Diverse viral proteases activate the NLRP1 inflammasome[J]. eLife, 2021, 10:e60609. |
[64] | BAUERNFRIED S, SCHERR M J, PICHLMAIR A, et al. Human NLRP1 is a sensor for double-stranded RNA[J]. Science, 2021, 371(6528):eabd0811. |
[65] | WU M F, CHEN S T, YANG A H, et al. CLEC5A is critical for dengue virus-induced inflammasome activation in human macrophages[J]. Blood, 2013, 121(1):95-106. |
[66] | HE Z J, AN S, CHEN J H, et al. Neural progenitor cell pyroptosis contributes to Zika virus-induced brain atrophy and represents a therapeutic target[J]. Proc Natl Acad Sci U S A, 2020, 117(38):23869-23878. |
[67] | WANG H B, LEI X B, XIAO X, et al. Reciprocal regulation between enterovirus 71 and the NLRP3 inflammasome[J]. Cell Rep, 2015, 12(1):42-48. |
[68] | SHI C S, NABAR N R, HUANG N N, et alr. SARS-coronavirus open reading frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes[J]. Cell Death Discov, 2019, 5:101. |
[69] | DOITSH G, GALLOWAY N L K, GENG X, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection[J]. Nature, 2014, 505(7484):509-514. |
[70] | LU Y Y, LIU X L, HUANG Y, et al. Short-lived AIM2 inflammasome activation relates to chronic MCMV infection in BALB/c mice[J]. Curr Med Sci, 2019, 39(6):899-905. |
[71] | MAN S M, KARKI R, KANNEGANTI T D. AIM2 inflammasome in infection, cancer, and autoimmunity:role in DNA sensing, inflammation, and innate immunity[J]. Eur J Immunol, 2016, 46(2):269-280. |
[72] | ATABAKI R, KHALEGHZADEH-AHANGAR H, ESMAEILI N, et al. Role of pyroptosis, a pro-inflammatory programmed cell death, in epilepsy[J]. Cell Mol Neurobiol, 2023, 43(3):1049-1059. |
[73] | COOKSON B T, BRENNAN M A. Pro-inflammatory programmed cell death[J]. Trends Microbiol, 2001, 9(3):113-114. |
[74] | GREGORY S M, DAVIS B K, WEST J A, et al. Discovery of a viral NLR homolog that inhibits the inflammasome[J]. Science, 2011, 331(6015):330-334. |
[75] | GERLIC M, FAUSTIN B, POSTIGO A, et al. Vaccinia virus F1L protein promotes virulence by inhibiting inflammasome activation[J]. Proc Natl Acad Sci U S A, 2013, 110(19):7808-7813. |
[76] | MARUZURU Y, ICHINOHE T, SATO R, et al. Herpes simplex virus 1 VP22 inhibits AIM2-dependent inflammasome activation to enable efficient viral replication[J]. Cell Host Microbe, 2018, 23(2):254-265. e7. |
[77] | ORZALLI M H, BROEKEMA N M, KNIPE D M. Relative contributions of herpes simplex virus 1 ICP0 and vhs to loss of cellular IFI16 vary in different human cell types[J]. J Virol, 2016, 90(18):8351-8359. |
[78] | SONG Y J, WU X, XU Y H, et al. HPV E7 inhibits cell pyroptosis by promoting TRIM21-mediated degradation and ubiquitination of the IFI16 inflammasome[J]. Int J Biol Sci, 2020, 16(15):2924-2937. |
[79] | DORFLEUTNER A, TALBOTT S J, BRYAN N B, et al. A shope fibroma virus PYRIN-only protein modulates the host immune response[J]. Virus Genes, 2007, 35(3):685-694. |
[80] | JOHNSTON J B, BARRETT J W, NAZARIAN S H, et al. A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection[J]. Immunity, 2005, 23(6):587-598. |
[81] | ROBINSON K S, TEO D E T, TAN K S, et al. Enteroviral 3C protease activates the human NLRP1 inflammasome in airway epithelia[J]. Science, 2020, 370(6521):eaay2002. |
[82] | KOMATSU T, TANAKA Y, KITAGAWA Y, et al. Sendai virus V protein inhibits the secretion of interleukin-1β by preventing NLRP3 inflammasome assembly[J]. J Virol, 2018, 92(19):e00842-18. |
[83] | KOMUNE N, ICHINOHE T, ITO M, et al. Measles virus V protein inhibits NLRP3 inflammasome-mediated interleukin-1β secretion[J]. J Virol, 2011, 85(24):13019-13026. |
[84] | SHIL N K, POKHAREL S M, BANERJEE A K, et al. Inflammasome antagonism by human parainfluenza virus type 3 C protein[J]. J Virol, 2018, 92(4):e01776-17. |
[85] | MA J, ZHU F R, ZHAO M, et al. SARS-CoV-2 nucleocapsid suppresses host pyroptosis by blocking Gasdermin D cleavage[J]. EMBO J, 2021, 40(18):e108249. |
[86] | WANG W B, CHEN J Z, YU X Q, et al. Signaling mechanisms of SARS-CoV-2 nucleocapsid protein in viral infection, cell death and inflammation[J]. Int J Biol Sci, 2022, 18(12):4704-4713. |
[87] | ZHANG L, WANG Z Y, ZHANG J, et al. Porcine parvovirus infection impairs progesterone production in luteal cells through mitogen-activated protein kinases, p53, and mitochondria-mediated apoptosis[J]. Biol Reprod, 2018, 98(4):558-569. |
[88] | ZHANG X J, MA P P, SHAO T, et al. Porcine parvovirus triggers autophagy through the AMPK/Raptor/mTOR pathway to promote viral replication in porcine placental trophoblasts[J]. Vet Res, 2022, 53(1):33. |
[89] | ZHANG X J, XIONG Y L, ZHANG J, et al. Autophagy promotes porcine parvovirus replication and induces non-apoptotic cell death in porcine placental trophoblasts[J]. Viruses, 2019, 12(1):15. |
[90] | 张秀娟. 猪细小病毒及其非结构蛋白NS1和NS2诱导猪胎盘滋养层细胞自噬作用与机制研究[D]. 杨凌:西北农林科技大学, 2020.ZHANG X J. The effects and mechanism of porcine placental trophoblast cell autophagy induced by porcine parvovirus and its non-structural proteins NS1 and NS2[D]. Yangling:Northwest A&F University, 2020. (in Chinese) |
[91] | YANG B, XUE Q H, GUO J N, et al. Autophagy induction by the pathogen receptor NECTIN4 and sustained autophagy contribute to peste des petits ruminants virus infectivity[J]. Autophagy, 2020, 16(5):842-861. |
[92] | FERREIRA A C, SOARES V C, DE AZEVEDO-QUINTANILHA I G, et al. SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes[J]. Cell Death Discov, 2021, 7(1):43. |
[93] | ZHOU Z W, HE H B, WANG K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells[J]. Science, 2020, 368(6494):eaaz7548. |
[1] | 李剑南, 袁利明, 华进联. CD46基因在家畜抗病育种中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1866-1874. |
[2] | 余祖华, 高梦茹, 齐志颖, 张静雨, 何雷, 陈建, 丁轲. RNA结合蛋白ELAVL1的功能及其调控病毒复制的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1914-1925. |
[3] | 董书餐, 毛帅翔, 伍翠莹, 李耀坤, 孙宝丽, 郭勇庆, 邓铭, 刘德武, 柳广斌. 雄激素受体抑制剂恩杂鲁胺对山羊卵泡颗粒细胞增殖凋亡的影响[J]. 畜牧兽医学报, 2024, 55(5): 2022-2031. |
[4] | 黄金, 李思远, 毛立, 蔡旭航, 谢玲玲, 王府, 周华, 李基棕, 李彬. 牛冠状病毒S1蛋白的真核表达及间接ELISA方法的建立与应用[J]. 畜牧兽医学报, 2024, 55(5): 2050-2060. |
[5] | 韩阳, 关帅印, 李振, 周赛赛, 袁红根, 宋云峰. 猪圆环病毒3型Rep蛋白的原核表达及酶活性分析[J]. 畜牧兽医学报, 2024, 55(5): 2061-2071. |
[6] | 宋晓晴, 邓瑞德, 李欣, 李姣, 李润成, 杜丽飞, 董伟, 葛猛. PCV4 Cap抗体ELISA检测方法的建立及血清流行病学调查[J]. 畜牧兽医学报, 2024, 55(5): 2072-2079. |
[7] | 周扬, 吴炜姿, 曹伟胜, 王福广, 许秀琼, 钟文霞, 吴立炀, 叶健, 卢受昇. 基于Nanopore测序技术的非洲猪瘟病毒全基因组测序方法建立[J]. 畜牧兽医学报, 2024, 55(5): 2080-2089. |
[8] | 徐红, 商红旗, 张雪, 钱嘉莉, 王传红, 宋旭, 宝梅英, 刘诗雨, 张格格, 郭容利, 赵永祥, 范宝超, 李彬. C8orf4基因编码蛋白对猪流行性腹泻病毒体外复制的抑制效应[J]. 畜牧兽医学报, 2024, 55(5): 2100-2108. |
[9] | 熊挺, 何献铭, 赵希雅, 庄婷婷, 黄美珍, 梁世金, 余传照, 梁雪静, 陈瑞爱. 三株鸡传染性支气管炎病毒优势流行毒株全基因组分析及其致病性[J]. 畜牧兽医学报, 2024, 55(5): 2109-2122. |
[10] | 吕亚迪, 杨洁, 谢文婷, 徐婷, 陈瑞爱. 共表达膜结合型与可溶性H9N2亚型禽流感病毒HA蛋白的重组基因Ⅶ型新城疫病毒的构建及免疫效果评价[J]. 畜牧兽医学报, 2024, 55(5): 2123-2134. |
[11] | 王静, 张淑娟, 胡霞, 刘向阳, 张兴翠, 宋振辉. CD44通过影响猪流行性腹泻病毒复制调节钠氢交换体3活性[J]. 畜牧兽医学报, 2024, 55(5): 2176-2185. |
[12] | 张颖, 宋春莲, 张莹, 沈鸿, 舒相华, 杨洪贵. 伪狂犬病病毒感染小鼠基质金属蛋白酶-9介导紧密连接蛋白损伤血脑屏障的研究[J]. 畜牧兽医学报, 2024, 55(5): 2186-2194. |
[13] | 王吉英, 尹蕊如, 谢星, 王海燕, 刘胡栋, 胡辉, 熊祺琰, 冯志新, 邵国青, 于岩飞. 猪肺炎支原体乳酸脱氢酶在诱导猪支气管上皮细胞凋亡中的作用[J]. 畜牧兽医学报, 2024, 55(5): 2195-2205. |
[14] | 李秋云, 田芯源, 廖文圣, 张焕容, 任玉鹏, 杨发龙, 朱江江, 向华. SOCS2对山羊鼻甲骨细胞增殖、周期及凋亡的影响[J]. 畜牧兽医学报, 2024, 55(5): 2226-2240. |
[15] | 李鹏飞, 高桂琴, 周广青, 吴锦艳, 颜新敏, 曹小安, 何继军, 袁莉刚, 尚佑军. 山羊地方性鼻内肿瘤病毒TaqMan荧光定量RT-PCR检测方法的建立及应用[J]. 畜牧兽医学报, 2024, 55(5): 2259-2266. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||