畜牧兽医学报 ›› 2020, Vol. 51 ›› Issue (5): 899-906.doi: 10.11843/j.issn.0366-6964.2020.05.001
杨晓伟1,2, 赵永聚2*
收稿日期:
2019-12-10
出版日期:
2020-05-25
发布日期:
2020-05-16
通讯作者:
赵永聚,主要从事动物分子遗传育种研究,E-mail:zyongju@163.com
作者简介:
杨晓伟(1980-),女,吉林通化人,博士生,讲师,主要从事遗传免疫学相关研究,E-mail:yangxiaowei396@163.com
基金资助:
YANG Xiaowei1,2, ZHAO Yongju2*
Received:
2019-12-10
Online:
2020-05-25
Published:
2020-05-16
摘要: 子宫自然杀伤(uterine natural killer,uNK)细胞是哺乳动物妊娠早期胎盘蜕膜中数量最多的免疫细胞。妊娠期间,uNK细胞对子宫免疫耐受环境建立,胎盘以及胎儿的发育等均具有重要调控作用。目前,有关妊娠中uNK细胞独特生物活性调控机制研究非常缺乏。本文综合相关研究,介绍了妊娠过程中uNK细胞在母-胎免疫耐受建立、胎盘和胎儿发育过程中重要调控作用,并总结激素、糖代谢以及DNA甲基化等对其他组织NK细胞调控机制研究,为探索uNK细胞调控分子机制提供新的研究方向和思路。
中图分类号:
杨晓伟, 赵永聚. 哺乳动物子宫自然杀伤(uNK)细胞对妊娠的调控作用[J]. 畜牧兽医学报, 2020, 51(5): 899-906.
YANG Xiaowei, ZHAO Yongju. The Regulation Role of Uterine Natural Killer (uNK) Cells during Pregnancy in Mammals[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(5): 899-906.
[1] | FAAS M M,DE VOS P.Uterine NK cells and macrophages in pregnancy[J].Placenta,2017,56:44-52. |
[2] | SANTONI A,CARLINO C,GISMONDI A.Uterine NK cell development,migration and function[J].Reprod BioMed Online, 2008, 16(2):202-210. |
[3] | ABEL A M,YANG C,THAKAR M S,et al,Natural killer cells:development,maturation,and clinical utilization[J].Front Immunol,2018,9:1869. |
[4] | KALKUNTE S,CHICHESTER C O,GOTSCH F,et al.Evolution of non-cytotoxic uterine natural killer (uNK) cells[J].Am J Reprod Immunol,2008,59(5):425-432. |
[5] | PARHAM P,GUETHLEIN L A.Genetics of natural killer cells in human health,disease,and survival[J].Annu Rev Immunol,2018,36:519-548. |
[6] | REDLINE R W.Role of uterine natural killer cells and interferon γ in placental development[J].J Exp Med,2000,192(2):F1-F4. |
[7] | LE BOUTEILLER P.Human decidual NK cells:unique and tightly regulated effector functions in healthy and pathogen-infected pregnancies[J].Front Immunol,2013,4:404. |
[8] | JABRANE-FERRAT N.Features of human decidual NK cells in healthy pregnancy and during viral infection[J].Front Immunol,2019,10:1397. |
[9] | ANDREOTTI J P,PAIVA A E,PRAZERES P H D M,et al.The role of natural killer cells in the uterine microenvironment during pregnancy[J].Cell Mol Immunol,2018,15(11):941-943. |
[10] | 曹雪涛.免疫学前沿进展[M].4版.北京:人民卫生出版社,2017.CAO X T,Advances in immunology[M].4th ed.Beijing:People's Medical Publishing House,2017.(in Chinese) |
[11] | RAJAGOPALAN S.HLA-G-mediated NK cell senescence promotes vascular remodeling:implications for reproduction[J].Cell Mol Immunol,2014,11(5):460-466. |
[12] | SZEKERES-BARTHO J.Regulation of NK cell cytotoxicity during pregnancy[J].Reprod BioMed Online,2008,16(2):211-217. |
[13] | TILBURGS T,EVANS J H,CRESPO Â C,et al.The HLA-G cycle provides for both NK tolerance and immunity at the maternal-fetal interface[J].Proc Natl Acad Sci U S A,2015,112(43):13312-13317. |
[14] | GUO W W,FANG L,LI B,et al.Decreased human leukocyte antigen-G expression by miR-133a contributes to impairment of proinvasion and proangiogenesis functions of decidual NK cells[J].Front Immunol,2017,8:741. |
[15] | ROUSSEV R G,DONS'KOI B V,STAMATKIN C,et al.Preimplantation factor inhibits circulating natural killer cell cytotoxicity and reduces CD69 expression:implications for recurrent pregnancy loss therapy[J].Reprod BioMed Online,2013, 26(1):79-87. |
[16] | ZHANG Y,WANG Y,WANG X H,et al.Crosstalk between human endometrial stromal cells and decidual NK cells promotes decidualization in vitro by upregulating IL-25[J].Mol Med Rep,2018,17(2):2869-2878. |
[17] | CO E C,GORMLEY M,KAPIDZIC M,et al.Maternal decidual macrophages inhibit NK cell killing of invasive cytotrophoblasts during human pregnancy[J].Biol Reprod,2013,88(6):155. |
[18] | FU B Q,LI X C,SUN R,et al.Natural killer cells promote immune tolerance by regulating inflammatory TH17 cells at the human maternal-fetal interface[J].Proc Natl Acad Sci U S A,2013,110(3):E231-E240. |
[19] | 付斌清.NK细胞发育及蜕膜NK细胞在胚胎耐受中的功能[D].合肥:中国科学技术大学,2011.FU B Q.The development of human NK cells and the function of decidual NK cells during pregnancy tolerance[D].Hefei:University of Science and Technology of China,2011.(in Chinese) |
[20] | KOPCOW H,ROSETTI F,LEUNG Y,et al.Decidual NK cells play a role in maternal-fetal tolerance by producing galectin-1[J].Clin Immunol,2008,127(Suppl):S10. |
[21] | 丁培阳,刘艳利,曹阳坡,等.妊娠山羊子宫uNK细胞与VEGF动态分布研究[J].畜牧兽医学报,2014,45(5):821-826.DING P Y,LIU Y L,CAO Y P,et al.Study of the dynamic distribution of uNK cells and VEGF in the pregnant goat[J].Acta Veterinaria et Zootechnica Sinica,2014,45(5):821-826.(in Chinese) |
[22] | RAJAGOPALAN S.HLA-G-mediated NK cell senescence promotes vascular remodeling:implications for reproduction[J].Cell Mol Immunol,2014,11(5):460-466. |
[23] | LASH G E,SCHIESSL B,KIRKLEY M,et al.Expression of angiogenic growth factors by uterine natural killer cells during early pregnancy[J].J Leukoc Biol,2006,80(3):572-580. |
[24] | ROBSON A,HARRIS L K,INNES B A,et al.Uterine natural killer cells initiate spiral artery remodeling in human pregnancy[J].FASEB J,2012,26(12):4876-4885. |
[25] | LASH G E,SCHIESSL B,KIRKLEY M,et al.Expression of angiogenic growth factors by uterine natural killer cells during early pregnancy[J].J Leukoc Biol,2006,80(3):572-580. |
[26] | CARTWRIGHT J E,JAMES-ALLAN L,BUCKLEY R J,et al.The role of decidual NK cells in pregnancies with impaired vascular remodelling[J].J Reprod Immunol,2017,119:81-84. |
[27] | FU B Q,ZHOU Y G,NI X,et al.Natural killer cells promote fetal development through the secretion of growth-promoting factors[J].Immunity,2017,47(6):1100-1113.e6. |
[28] | MENDOZA-CABRERA M I,NAVARRO-HERNÁ-NDEZ R,SANTERRE A,et al.Effect of pregnancy hormone mixtures on cytokine production and surface marker expression in naïve and LPS-activated THP-1 differentiated monocytes/macrophages[J]. Innate Immun,2020,26(2):84-96. |
[29] | OKADA H,NAKAJIMA T,SANEZUMI M,et al.Progesterone enhances interleukin-15 production in human endometrial stromal cells in vitro[J].J Clin Endocrinol Metab,2000,85(12):4765-4770. |
[30] | 徐宏,余克花,张保平,等.雌、孕激素对小鼠uNK细胞在子宫壁内分布的影响[J].中国免疫学杂志,2010,26(4):330-334.XU H,YU K H,ZHANG B P,et al.The effects of estrogen and progesterone on distribution of uNK cells in mouse uterus[J].Chinese Journal of Immunology,2010,26(4):330-334.(in Chinese) |
[31] | 廖庆红,丁培阳,赵丹丹,等.山羊子宫内膜细胞与性腺激素对uNK细胞分泌活性的调节作用[J].畜牧兽医学报,2013,44(6):866-870.LIAO Q H,DING P Y,ZHAO D D,et al.Regulatory role of goat endometrial cells and sex gland hormones in uNK cells secretion[J].Acta Veterinaria et Zootechnica Sinica,2013,44(6):866-870.(in Chinese) |
[32] | QIN L J,LEI M Z,ZHAO D D,et al.Goat uterine DBA+ leukocytes differentiation and cytokines expression respond differently to cloned versus fertilized embryos[J].PLoS One,2015,10(1):e0116649 |
[33] | CHEN Y Z,WANG Y,ZHUANG Y L,et al.Mifepristone increases the cytotoxicity of uterine natural killer cells by acting as a glucocorticoid antagonist via ERK activation[J].PLoS One,2012,7(5):e36413. |
[34] | PENG M,YIN N,CHHANGAWALA S,et al.Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism[J].Science,2016,354(6311):481-484. |
[35] | MENK A V,SCHARPING N E,MORECI R S,et al.Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions[J].Cell Rep,2018,22(6):1509-1521. |
[36] | GARDINER C M,FINLAY D K.What fuels natural killers? Metabolism and NK cell responses[J].Front Immunol,2017,8:367. |
[37] | ISAACSON B,MANDELBOIM O.Sweet killers:NK cells need glycolysis to kill tumors[J].Cell Metab,2018,28(2):183-184. |
[38] | MACIVER N J,JACOBS S R,WIEMAN H L,et al.Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival[J].J Leukoc Biol,2008,84(4):949-957. |
[39] | BUCK M D,SOWELL R T,KAEC S M,et al.Metabolic instruction of immunity[J].Cell,2017,169(4):570-586. |
[40] | HELLWIG D,VOIGT J,BOUZAN M,et al.Candida albicans induces metabolic reprogramming in human nk cells and responds to perforin with a zinc depletion response[J].Front Microbiol,2016,7:750. |
[41] | CONG J J,WANG X W,ZHENG X H,et al.Dysfunction of natural killer cells by FBP1-induced inhibition of glycolysis during lung cancer progression[J].Cell Metab,2018,28(2):243-255.e5. |
[42] | BRAND A,SINGER K,KOEHL G E,et al.LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells[J].Cell Metab,2016,24(5):657-671. |
[43] | WAGNER J A,ROSARIO M,ROMEE R,et al.CD56bright NK cells exhibit potent antitumor responses following IL-15 priming[J].J Clin Invest,2017,127(11):4042-4058. |
[44] | KEPPEL M P,SAUCIER N,MAH A Y,et al.Activation-specific metabolic requirements for NK cell IFN-γ production[J].J Immunol, 2015,194(4):1954-1962. |
[45] | MAH A Y,COOPER M A.Metabolic regulation of natural killer Cell IFN-γ production[J].Crit Rev Immunol,2016, 36(2):131-147. |
[46] | VENTO-TORMO R,EFREMOVA M,BOTTING R A,et al.Single-cell reconstruction of the early maternal-fetal interface in humans[J].Nature,2018,563(7731):347-353. |
[47] | SUN F F,ABREU-RODRIGUEZ I,YE S,et al.TET1 is an important transcriptional activator of TNFα expression in macrophages[J]. PLoS One,2019,14(6):e0218551. |
[48] | LI Y J,ZHOU J,RUI X Q,et al.PM2.5 exposure exacerbates allergic rhinitis in mice by increasing DNA methylation in the IFN-γ gene promoter in CD4+T cells via the ERK-DNMT pathway[J].Toxicol Lett,2019,301:98-107. |
[49] | LAU C M,ADAMS N M,GEARY C D,et al.Epigenetic control of innate and adaptive immune memory[J].Nat Immunol,2018, 19(9):963-972. |
[50] | LI H,LU T,SUN W,et al.Ten-Eleven Translocation (TET) enzymes modulate the activation of dendritic cells in allergic rhinitis[J]. Front Immunol,2019,10:2271. |
[51] | HILL P W S,AMOUROUX R,HAJKOVA P.DNA demethylation,Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming:an emerging complex story[J].Genomics,2014,104(5):324-333. |
[52] | 张晓芸,常人葆,韩大力.哺乳动物DNA去甲基化及生物学功能[J].生命科学,2018,30(4):354-365.ZHANG X Y,CHANG R B,HAN D L.DNA demethylation and biological function in mammals[J].Chinese Bulletin of Life Sciences,2018,30(4):354-365.(in Chinese) |
[53] | YIN J,LEAVENWORTH J W,LI Y,et al.Ezh2 regulates differentiation and function of natural killer cells through histone methyltransferase activity[J].Proc Natl Acad Sci U S A,2015,112(52):15988-15993. |
[54] | LUETKE-EVERSLOH M,CICEK B B,SIRACUSA F,et al.NK cells gain higher IFN-γ competence during terminal differentiation[J]. Eur J Immunol,2014,44(7):2074-2084. |
[55] | AUNE T M,COLLINS P L,COLLIER S P,et al.Epigenetic activation and silencing of the gene that encodes IFN-γ[J].Front Immunol,2013,4:112. |
[56] | SANTOURLIDIS S,TROMPETER H I,WEINHOLD S,et al.Crucial role of DNA methylation in determination of clonally distributed killer cell Ig-like receptor expression patterns in NK cells[J].J Immunol,2002,169(8):4253-4261. |
[57] | 高晓宁,于力.启动子甲基化调控NK-92MI细胞KIR3DL1基因表达[J].细胞与分子免疫学杂志,2008,24(7):668-671,675.GAO X N,YU L.Promoter methylation regulates KIR3DL1 gene expression in NK-92MI cell line[J].Chinese Journal of Cellular and Molecular Immunology,2008,24(7):668-671,675.(in Chinese) |
[58] | 高晓宁,林季,王莉莉,等.去甲基化处理对NK-92MI细胞系抑制性受体KIR表达的影响[J].中国实验血液学杂志,2009,17(3):656-660.GAO X N,LIN J,WANG L L,et al.Effect of demethylation treatment on the expression of inhibitory receptor KIR gene in NK-92MI cell line[J].Journal of Experimental Hematology,2009,17(3):656-660.(in Chinese) |
[59] | 高晓宁,王莉莉,林季,等.去甲基化处理对NK-92MI细胞杀伤活力的影响[J].中国实验血液学杂志,2009,17(4):924-928.GAO X N,WANG L L,LIN J,et al.Effect of demethylating treatment on cytotoxicity of NK-92MI cells[J].Journal of Experimental Hematology,2009,17(4):924-928.(in Chinese) |
[60] | TAHILIANI M,KOH K P,SHEN Y H,et al.Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1[J].Science,2009,324(5929):930-935. |
[61] | CIMMINO L,AIFANTIS I.Alternative roles for oxidized mCs and TETs[J].Curr Opin Genet Dev,2017,42:1-7. |
[62] | KHOUEIRY R,SOHNI A,THIENPONT B,et al.Lineage-specific functions of TET1 in the postimplantation mouse embryo[J]. Nat Genet,2017,49(7):1061-1072. |
[63] | WU H,D'ALESSIO A C,ITO S,et al.Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells[J]. Nature, 2011,473(7347):389-393. |
[64] | DAWLATY M M,GANZ K,POWELL B E,et al.Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development[J].Cell Stem Cell,2011,9(2):166-175. |
[65] | RAWŁUSZKO-WIECZOREK A A,SIERA A,JAGODZIŃSKI P P.TET proteins in cancer:current ‘state of the art’[J].Crit Rev Oncol Hematol,2015,96(3):425-436. |
[66] | HUANG Y,RAO A.Connections between TET proteins and aberrant DNA modification in cancer[J].Trends Genet,2014, 30(10):464-474. |
[67] | SCOTT-BROWNE J P,LIO C W J,RAO A.TET proteins in natural and induced differentiation[J].Curr Opin Genet Dev,2017, 46:202-208. |
[68] | HU X,ZHANG L,MAO S Q,et al.Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming[J].Cell Stem Cell,2014,14(4):512-522. |
[69] | LI D W,CHEN J K,PEI D Q.The battle between TET proteins and DNA methylation for the right cell[J].Trends Cell Biol,2018,28(12):973-975. |
[70] | TSAGARATOU A,GONZÁLEZ-AVALOS E,RAUTIO S,et al.TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells[J].Nat Immunol,2017,18(1):45-53. |
[71] | YANG R L,QU C Y,ZHOU Y,et al.Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis[J].Immunity,2015,43(2):251-263. |
[72] | YANG C,LI Z,KANG W,et al.TET1 and TET3 are essential in induction of Th2-type immunity partly through regulation of IL-4/13A expression in zebrafish model[J].Gene,2016,591(1):201-208. |
[73] | YAMAGUCHI S,SHEN L,LIU Y T,et al.Role of Tet1 in erasure of genomic imprinting[J].Nature,2013,504(7480):460-464. |
[74] | RAKOCZY J,PADMANABHAN N,KRZAK A M,et al.Dynamic expression of TET1,TET2,and TET3 dioxygenases in mouse and human placentas throughout gestation[J].Placenta,2017,59:46-56. |
[75] | JAFARPOUR F,HOSSEINI S M,OSTADHOSSEINI S,et al.Comparative dynamics of 5-methylcytosine reprogramming and TET family expression during preimplantation mammalian development in mouse and sheep[J].Theriogenology,2017,89:86-96. |
[76] | 谭强,罗南剑,张艳丽,等.山羊早期胎儿组织TET1与Wnt通路基因的表达变化及其相关性[J].中国农业科学,2017,50(14):2816-2825.TAN Q,LUO N J,ZHANG Y L,et al.Expression patterns and correlation of Wnts and TET1 genes in early fetal tissues of Dazu black goat[J].Scientia Agricultura Sinica,2017,50(14):2816-2825.(in Chinese) |
[77] | BRINTON R D.Estrogen regulation of glucose metabolism and mitochondrial function:therapeutic implications for prevention of Alzheimer's disease[J].Adv Drug Deliv Rev,2008,60(13-14):1504-1511. |
[78] | RYUK J A,KO B S,LEE H W,et al.Tetragonia tetragonioides (Pall.) Kuntze protects estrogen-deficient rats against disturbances of energy and glucose metabolism and decreases proinflammatory cytokines[J].Exp Biol Med (Maywood),2017,242(6):593-605. |
[79] | CHISOLM D A,WEINMANN A S.Connections between metabolism and epigenetics in programming cellular differentiation[J].Annu Rev Immunol,2018,36:221-246. |
[80] | PENG M,YIN N,CHHANGAWALA S,et al.Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism[J].Science,2016,354(6311):481-484. |
[81] | DING G L,HUANG H E.Role for Tet in hyperglycemia-induced demethylation:a novel mechanism of diabetic metabolic memory[J].Diabetes,2014,63(9):2906-2908. |
[82] | XIE B Y,LV Q Y,NING C C,et al.TET1-GPER-PI3K/AKT pathway is involved in insulin-driven endometrial cancer cell proliferation[J].Biochem Biophys Res Commun,2017,482(4):857-862. |
[1] | 向辉, 桂林森, 杨迪, 魏士昊, 宫艳斌, 史远刚, 马云, 淡新刚. 奶牛同期发情-定时输精技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1412-1422. |
[2] | 梁淑怡, 李凡, 江青艳, 王松波. 脯氨酸羟化酶(PHDs)对动物骨骼肌发育和脂肪沉积的调控作用及其机制[J]. 畜牧兽医学报, 2024, 55(3): 867-873. |
[3] | 钟朱夏, 胡修忠, 向敏, 余婕, 刘辰晖, 赵胜兰, 万平民, 王定发, 周源, 程蕾. 妊娠相关糖蛋白的生物学功能及其在畜牧生产中的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 874-881. |
[4] | 沈文娟, 杨卓, 张馨蕊, 付予, 陶金忠. 奶牛生殖道微生物与繁殖及相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 924-932. |
[5] | 张馨蕊, 付予, 杨卓, 沈文娟, 陶金忠. 奶牛早期妊娠诊断蛋白的研究[J]. 畜牧兽医学报, 2024, 55(2): 451-460. |
[6] | 姚颖, 周应聪, 杜培岩, 李一娟, 钱文洁, 李柳杨, 余志鹏, 崔燕, 余四九, 樊江峰. 基于TMT技术的牦牛妊娠期血清蛋白质组学分析[J]. 畜牧兽医学报, 2024, 55(1): 192-206. |
[7] | 原开敏, 时玉新, 董智豪, 赵羚均, 许师源, 吴开慧, 王栋. 母牛早期妊娠诊断技术研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2223-2230. |
[8] | 李雯乔, 李发弟, 王新基, 乐祥鹏. 家畜早期妊娠诊断的研究进展[J]. 畜牧兽医学报, 2023, 54(5): 1782-1791. |
[9] | 卓儒浩, 柳清扬, 钟翔. 姜黄素调控肠道菌群及抗病毒作用研究进展[J]. 畜牧兽医学报, 2023, 54(2): 473-483. |
[10] | 杜海东, 娜仁花. 反刍动物妊娠期和泌乳期生理代谢和微生物变化及其对子代发育的影响研究进展[J]. 畜牧兽医学报, 2023, 54(11): 4458-4467. |
[11] | 魏士昊, 戴天姝, 王锋, 史远刚, 马云, 淡新刚. 奶牛早孕诊断技术研究进展[J]. 畜牧兽医学报, 2022, 53(7): 2047-2056. |
[12] | 郭大伟, 侯思鲁, 池宇佳, 于非可, 尉啸涵, 邓倩, 肖传明, 刘晓晔, 董虹. 芪英汤和子甘汤中药复方促进母猪繁殖性能和断奶仔猪生长性能的临床研究[J]. 畜牧兽医学报, 2022, 53(6): 1994-2004. |
[13] | 骆金红, 陈祥, 尚以顺, 敖叶, 李鹏程. 转录组测序筛选山羊妊娠早期胚胎附植相关基因[J]. 畜牧兽医学报, 2022, 53(5): 1465-1474. |
[14] | 祁梦凡, 谢苏, 高若男, 孙义姗, 孙晓梅, 和军飞, 鲁慧文, 卢世豪, 陈鑫, 李清春, 黄涛. 母猪妊娠早期血液中差异表达蛋白的鉴定[J]. 畜牧兽医学报, 2022, 53(4): 1109-1121. |
[15] | 王佳琪, 刘彦, 郑琛, 冯涛. 猪妊娠期母胎对话的研究进展[J]. 畜牧兽医学报, 2022, 53(12): 4138-4147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||