畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (4): 1648-1663.doi: 10.11843/j.issn.0366-6964.2025.04.015
胥辉豪1,2,*(), 杜昕悦1, 邓航1, 彭韵颖1, 杨恒1, 张德志1, 曹礼静3, 郑小波1, 甘玲1,*(
)
收稿日期:
2025-06-05
出版日期:
2025-04-23
发布日期:
2025-04-28
通讯作者:
胥辉豪,甘玲
E-mail:xuhuihao2dai@163.com;gl9089@swu.edu.cn
作者简介:
胥辉豪(1983-), 男, 重庆人, 副教授, 博士, 主要从事兽医外、产科学、兽医眼科学与肿瘤学等研究基金资助:
XU Huihao1,2,*(), DU Xinyue1, DENG Hang1, PENG Yunying1, YANG Heng1, ZHANG Dezhi1, CAO Lijing3, ZHENG Xiaobo1, GAN Ling1,*(
)
Received:
2025-06-05
Online:
2025-04-23
Published:
2025-04-28
Contact:
XU Huihao, GAN Ling
E-mail:xuhuihao2dai@163.com;gl9089@swu.edu.cn
摘要:
光学相干断层扫描(optical coherence tomography,OCT)是一种非接触、非侵入式的影像学检查手段,被广泛应用于人类眼科临床与科研中。近年来,随着临床兽医学的飞速发展,OCT检测技术在小动物医学、比较眼科学以及野生动物中也逐渐得到应用。现就OCT技术在不同动物的各种眼科疾病的诊断与眼科学研究中的运用与进展进行综述,旨在为兽医眼科相关疾病的临床诊断及比较医学提供有意义的指导与参考。
中图分类号:
胥辉豪, 杜昕悦, 邓航, 彭韵颖, 杨恒, 张德志, 曹礼静, 郑小波, 甘玲. 光学相干断层扫描在兽医眼科学中的运用[J]. 畜牧兽医学报, 2025, 56(4): 1648-1663.
XU Huihao, DU Xinyue, DENG Hang, PENG Yunying, YANG Heng, ZHANG Dezhi, CAO Lijing, ZHENG Xiaobo, GAN Ling. Application and Research Advance of Optical Coherence Tomography in Veterinary Ophthalmology[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1648-1663.
表 1
OCT在兽医眼科中的应用"
OCT分类 OCT classification | 原理 Principle | 兽医眼科学中的应用 Application in veterinary ophthalmology | 所用物种 Species | |
时域OCT Time-domain optical coherence tomography (TD-OCT) | TD-OCT基于低相干干涉原理,通过测量光波反射生成内部结构横截面图像,提供强大穿透力的图像。但由于其扫描波长较长,图像分辨率较低 | 研究初期应用,发展至今是一种成熟的技术,并在诊断领域的应用较多。TD-OCT相对SD-OCT分辨率较低,速度有限,同时相对便宜,直接识别某些组织如Schwalbe线(SL)具有挑战性,同时与SD-OCT相比可靠性指标较低,主要用于基础研究和初步临床应用 | 犬 | |
傅里叶域 OCT Frequency-domain optical coherence tomography (FD-OCT) | 谱域OCT Spectral domain-optical coherence tomography (SD-OCT) | SD-OCT利用光谱分析,实现更高分辨率和更快扫描速度。SD-OCT可收集单个横截面或形成完整三维(3D)图像,通过不同组织光学特性的变化导致不同的反射强度生成不同信号,储存为图像数据,从而测量不同组织厚度 | SD-OCT的图像分辨率得到提高,广泛应用于眼前节和眼后节检查,如角膜厚度测量、前葡萄膜炎诊断、视网膜疾病检测、青光眼的研究,甚至检测很小的结构,甚至可以检测很小的结构,例如后弹力层膜的末端,或者测量较为虹膜角角参数 | 犬、猫、鼠、兔、马、蛇、蝾螈 |
傅里叶域 OCT Frequency-domain optical coherence tomography (FD-OCT) | 前节OCT Anterior segment-optical coherence tomography (AS-OCT) | AS-OCT是SD-OCT的一种改进形式,专门用于眼前节结构成像,例如提供可视化的角度几何形状,能为眼前节的定性和定量分析提供详细的横截面图像。AS-OCT利用自适应光学元件来校正波前畸变,具有出色的操作间可重复性。其子类别包括超高分辨率OCT,光谱OCT等AS-OCT,实现低于2 μm的轴向分辨率和散射和吸收特定光谱等功能 | 用于评估角膜厚度、前房角、Schlemm管、虹膜基质形态、厚度等结构,适用于角膜水肿、角膜异物、前葡萄膜炎,评估泪液清除率(TCR) | 犬、猫、猪、猴、猫头鹰、小鼠、兔 |
扫频OCT Swept-source optical coherence tomography (SS-OCT) | SS-OCT使用扫频激光器,通过使用快速可调谐的窄带激光器作为扫描光源,能在很短时间内顺序改变发射光的波长,实现高分辨率、高灵敏度和高速度成像。相比SD-OCT,SS-OCT能够降低灵敏度衰减和降低样品运动引起的条纹冲刷伪影。由于SS-OCT的实时成像能力,适用于动态观察生物组织的变化 | 详细检查眼底和视网膜结构,评估和监测各种视网膜以及视网膜血流的改变,研究眼后节脉络膜的灌注以及定量检测视网膜层厚度变化 | 鼠、白鲟、猫头鹰 | |
偏振敏感OCT Polarization-sensitive optical coherence tomography (PS-OCT) | PS-OCT能够同时提供组织的偏振特性以及传统OCT的结构信息。由于不同组织对偏振光的相互作用不同,某些组织会导致偏振态的改变,PS-OCT通过分析这些变化例如双折射变化和偏振散射变化等提供额外信息。PS-OCT用于眼后节结构成像,提供视网膜和脉络膜精细影像,并检测测视网膜神经纤维层中胶原纤维的双折射变化,这是传统OCT无法实现的 | 用于眼前节以及后节的疾病的病例,如研究角膜中双折射异常情况,圆锥角膜,检测视网膜劈裂、视网膜萎缩、SARDS、PRA等视网膜疾病,为青光眼的早期诊断和治疗提供依据 | 鼠、兔 |
1 |
KIM S , KWAK J Y , JEONG M , et al. Deep anterior lamellar keratoplasty of dog eyes using the big-bubble technique[J]. J Vet Sci, 2016, 17 (3): 347- 352.
doi: 10.4142/jvs.2016.17.3.347 |
2 |
GRAHN B . Feline glaucoma[J]. Vet Clin North Am Small Anim Pract, 2023, 53 (2): 367- 387.
doi: 10.1016/j.cvsm.2022.10.002 |
3 |
LEIS M , GRAHN B . Glaucoma associated with anterior segment dysgenesis in dogs and cats[J]. Vet Clin North Am Small Anim Pract, 2023, 53 (2): 423- 437.
doi: 10.1016/j.cvsm.2022.11.003 |
4 |
TERHAAR H M , HENRIKSEN M L , UHL L K , et al. Pro-inflammatory cytokines in aqueous humor from dogs with anterior uveitis and post-operative ocular hypertension following phacoemulsification, primary glaucoma, and normal healthy eyes[J]. PloS One, 2022, 17 (8): e0273449.
doi: 10.1371/journal.pone.0273449 |
5 |
PARK S A , YI N Y , JEONG M B , et al. Clinical manifestations of cataracts in small breed dogs[J]. Vet Ophthalmol, 2009, 12 (4): 205- 210.
doi: 10.1111/j.1463-5224.2009.00697.x |
6 |
GROZDANIC S D , KECOVA H , LAZIC T . Rapid diagnosis of retina and optic nerve abnormalities in canine patients with and without cataracts using chromatic pupil light reflex testing[J]. Vet Ophthalmol, 2013, 16 (5): 329- 340.
doi: 10.1111/vop.12003 |
7 |
HERRMANN J W , HAMOR R E , PLUMMER C E . Canine retrobulbar cellulitis and abscessation in the Southeastern United States: A review of case management, diagnostic imaging, bacterial isolates, and susceptibility patterns[J]. Vet Ophthalmol, 2021, 24 (4): 326- 335.
doi: 10.1111/vop.12882 |
8 |
HUANG D , SWANSON E A , LIN C P , et al. Optical coherence tomography[J]. Science (New York, N.Y.), 1991, 254 (5035): 1178- 1181.
doi: 10.1126/science.1957169 |
9 |
HEE M R , IZATT J A , SWANSON E A , et al. Optical coherence tomography of the human retina[J]. Arch Ophthalmol, 1995, 113 (3): 325- 332.
doi: 10.1001/archopht.1995.01100030081025 |
10 |
VÖLKER M , SHINODA K , SACHS H , et al. In vivo assessment of subretinally implanted microphotodiode arrays in cats by optical coherence tomography and fluorescein angiography[J]. Graefes Arch Clin Exp Ophthalmol, 2004, 242 (9): 792- 799.
doi: 10.1007/s00417-004-0935-6 |
11 |
FAMOSE F . Assessment of the use of spectral domain optical coherence tomography (SD-OCT) for evaluation of the healthy and pathological cornea in dogs and cats[J]. Vet Ophthalmol, 2014, 17 (1): 12- 22.
doi: 10.1111/vop.12028 |
12 | 胡积烨, 陈隆, 黄丽媛, 等. 基于低相干光干涉的眼睛光学生物参数测量研究[J]. 生物化学与生物物理进展, 2022, 49 (9): 1810- 1820. |
HU J Y , CHEN L , HUANG L Y , et al. Research on measurement of optical biological parameters of eyes based on low-coherence light interference[J]. Progress in Biochemistry and Biophysics, 2022, 49 (9): 1810- 1820. | |
13 |
RAMOS J L B , LI Y , HUANG D . Clinical and research applications of anterior segment optical coherence tomography-a review[J]. Clin Exp Ophthalmol, 2009, 37 (1): 81- 89.
doi: 10.1111/j.1442-9071.2008.01823.x |
14 |
LI Y , MEISLER D , TANG M , et al. Keratoconus diagnosis with optical coherence tomography pachymetry mapping[J]. Ophthalmology, 2008, 115 (12): 2159- 2166.
doi: 10.1016/j.ophtha.2008.08.004 |
15 | AKIYAMA R , USUI T , YAMAGAMI S . Diagnosis of dry eye by tear meniscus measurements using anterior segment swept source optical coherence tomography[J]. Cornea, 2015, 34 (Suppl 11): S115- 120. |
16 |
PALEJWALA N , JIA Y , GAO S , et al. Detection of nonexudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography[J]. Retina, 2015, 35 (11): 2204- 2211.
doi: 10.1097/IAE.0000000000000867 |
17 | STEVENS T S . Optical coherence tomography of ocular diseases[J]. Arch Ophthalmol, 2005, 123 (2): 292. |
18 | 颜佳涛, 唐云, 袁锐, 等. 光学相干层析成像在生物医学中的研究进展[J]. 激光与光电子学进展, 2024, 12 (61): 61- 70. |
YAN J T , TANG Y , YUAN R , et al. Research progress of optical coherence tomography in biomedicine[J]. Laser & Optoelectronics Progress, 2024, 12 (61): 61- 70. | |
19 |
HOERAUF H , GORDES R , SCHOLZ C , et al. First experimental and clinical results with transscleral optical coherence tomography[J]. Ophthalmic Surg Lasers, 2000, 31 (3): 218- 222.
doi: 10.3928/1542-8877-20000501-11 |
20 |
RAJAGOPALAN U , TANIFUJI M . Functional optical coherence tomography reveals localized Layer-specific activations in cat primary visual cortex in vivo[J]. Opt Lett, 2007, 32 (17): 2614- 2616.
doi: 10.1364/OL.32.002614 |
21 |
KONSTANTOPOULOS A , HOSSAIN P , ANDERSON D . Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis?[J]. Br J Ophthalmol, 2007, 91, 551- 557.
doi: 10.1136/bjo.2006.103408 |
22 |
STROM A R , CORTÉS D E , RASMUSSEN C A , et al. In vivo evaluation of the cornea and conjunctiva of the normal laboratory beagle using time-and fourier-domain optical coherence tomography and ultrasound pachymetry[J]. Vet Ophthalmol, 2016, 19 (1): 50- 56.
doi: 10.1111/vop.12256 |
23 |
WOLFEL A E , PEDERSON S L , CLEYMAET A M , et al. Canine central corneal thickness measurements via Pentacam-HR®, optical coherence tomography (Optovue iVue®), and high-resolution ultrasound biomicroscopy[J]. Vet Ophthalmol, 2018, 21 (4): 362- 370.
doi: 10.1111/vop.12518 |
24 | 冯雪倩. 猫角膜缘干细胞采样、分离和培养的试验研究[D]. 重庆: 西南大学, 2022: 65. |
FENG X Q. Experimental study on sampling, isolation and culture of feline limbal stem cells[D]. Chongqing: Southwest University, 2022: 65. (in Chinese) | |
25 |
ALARIO A F , PIRIE C G . A Spectral-domain optical coherence tomography device provides reliable corneal pachymetry measurements in canine eyes[J]. Vet Rec, 2013, 172 (23): 605.
doi: 10.1136/vr.101530 |
26 |
ALARIO A F , PIRIE C G . Central corneal thickness measurements in normal dogs: A comparison between ultrasound pachymetry and optical coherence tomography[J]. Vet Ophthalmol, 2014, 17 (3): 207- 211.
doi: 10.1111/vop.12074 |
27 |
DA SILVA M-A O , GADE J T , DAMSGAARD C , et al. Morphology and evolution of the snake cornea[J]. J Morphol, 2020, 281 (2): 240- 249.
doi: 10.1002/jmor.21094 |
28 |
SHULL O R , REILLY C M , DAVIS L B , et al. Phenotypic characterization of corneal endothelial dystrophy in German shorthaired and wirehaired pointers using in vivo advanced corneal imaging and histopathology[J]. Cornea, 2018, 37 (1): 88- 94.
doi: 10.1097/ICO.0000000000001431 |
29 |
HOEHN A L , THOMASY S M , KASS P H , et al. Corrigendum to "Comparison of ultrasonic pachymetry and Fourier-domain optical coherence tomography for measurement of corneal thickness in dogs with and without corneal disease"[Vet. J. 242 (2018) 59-66][J]. Vet J, 2020, 262, 105514.
doi: 10.1016/j.tvjl.2020.105514 |
30 |
SAMUEL M , THOMASY S M , CALDERON A S , et al. Effects of 5% sodium chloride ophthalmic ointment on thickness and morphology of the normal canine cornea[J]. Vet Ophthalmol, 2019, 22 (3): 229- 237.
doi: 10.1111/vop.12582 |
31 |
JEONG M , YOO S . Optical coherence tomographic features of feline acute corneal hydrops: A case report[J]. Vet Ophthalmol, 2024, 27 (2): 191- 196.
doi: 10.1111/vop.13198 |
32 |
BUSSE C , KAFARNIK C , LINN-PEARL R , et al. Phenotype of macular corneal dystrophy in labrador retrievers: a multicenter study[J]. Vet Ophthalmol, 2019, 22 (3): 294- 304.
doi: 10.1111/vop.12596 |
33 |
CHO H , JEONG M , YOO S . A case of Candida Albicans-induced fungal keratitis in a Chihuahua dog-with a focus on optical coherence tomographic features[J]. J Vet Sci, 2023, 24 (2): e30.
doi: 10.4142/jvs.22131 |
34 |
KIM H , JEONG Y , LEE E , et al. Treatment of immune-mediated keratitis (IMMK) in dogs with immunosuppressants observed with spectral domain optical coherence tomography (SD-OCT)[J]. J Vet Sci, 2023, 24 (5): e66.
doi: 10.4142/jvs.23059 |
35 |
JEONG Y , KANG S , AHN J , et al. Assessment of corneal and limbal epithelial thickness by spectral-domain optical coherence tomography in brachycephalic and non-brachycephalic dogs[J]. Vet Ophthalmol, 2023, 26 (S1): 89- 97.
doi: 10.1111/vop.13016 |
36 |
MICHALAK S R , KIM S , PARK S , et al. Topical ripasudil for the treatment of primary corneal endothelial degeneration in dogs[J]. Transl Vis Sci Technol, 2022, 11 (9): 2.
doi: 10.1167/tvst.11.9.2 |
37 |
PARK S , SEBBAG L , MOORE B A , et al. Multimodal ocular imaging of known and novel corneal stromal disorders in dogs[J]. BMC Vet Res, 2022, 18 (1): 117.
doi: 10.1186/s12917-022-03214-7 |
38 |
JEONG Y , KANG S , SEO K . Comparative evaluation of corneal and limbal epithelial thickness in brachycephalic dogs with and without corneal diseases using spectral domain optical coherence tomography[J]. Vet Ophthalmol, 2024, 27 (1): 30- 39.
doi: 10.1111/vop.13102 |
39 |
GRONKIEWICZ K M , GIULIANO E A , KUROKI K , et al. Development of a novel in vivo corneal fibrosis model in the dog[J]. Exp Eye Res, 2016, 143, 75- 88.
doi: 10.1016/j.exer.2015.09.010 |
40 |
THOMASY S M , CORTES D E , HOEHN A L , et al. In vivo imaging of corneal endothelial dystrophy in boston terriers: a spontaneous, canine model for Fuchs' endothelial corneal dystrophy[J]. Invest Ophthalmol Vis Sci, 2016, 57 (9): OCT495- 503.
doi: 10.1167/iovs.15-18885 |
41 |
WIRBELAUER C , KARANDISH A , HÄBERLE H , et al. Noncontact goniometry with optical coherence tomography[J]. Arch Ophthalmol, 2005, 123 (2): 179- 185.
doi: 10.1001/archopht.123.2.179 |
42 |
CLEYMAET A M , HESS A M , FREEMAN K S . Comparison between Pentacam-HR and optical coherence tomographycentral corneal thickness measurements in healthy feline eyes[J]. Vet Ophthalmol, 2016, 19 (S1): 105- 114.
doi: 10.1111/vop.12397 |
43 |
KAFARNIK C , FARAJ L A , TING D S J , et al. Ex vivo demonstration of canine corneal pre-Descemet's anatomy using pneumodissection as for the big bubble technique for deep anterior lamellar keratoplasty[J]. Sci Rep, 2023, 13 (1): 5922.
doi: 10.1038/s41598-022-24438-5 |
44 |
ALMAZAN A , TSAI S , MILLER P E , et al. Iridocorneal angle measurements in mammalian species: normative data by optical coherence tomography[J]. Vet Ophthalmol, 2013, 16 (2): 163- 166.
doi: 10.1111/j.1463-5224.2012.01030.x |
45 |
GILGER B C . Advanced imaging of the equine eye[J]. Vet Clin North Am Equine Pract, 2017, 33 (3): 607- 626.
doi: 10.1016/j.cveq.2017.07.006 |
46 |
JEONG Y , KANG S , SHIM J , et al. The feasibility of clinical evaluation for anterior uveitis through spectral-domain optical coherence tomography in dogs[J]. Vet Ophthalmol, 2022, 25 (S1): 111- 121.
doi: 10.1111/vop.12955 |
47 |
EDMOND M , YUAN A , BELL B A , et al. The feasibility of spectral-domain optical coherence tomography grading of anterior chamber inflammation in a rabbit model of anterior uveitis[J]. Invest Ophthalmol Vis Sci, 2016, 57 (9): OCT184- 188.
doi: 10.1167/iovs.15-18883 |
48 |
THOMASY S M , EATON J S , TIMBERLAKE M J , et al. Species differences in the geometry of the anterior segment differentially affect anterior chamber cell scoring systems in laboratory animals[J]. J Ocul Pharmacol Ther, 2016, 32 (1): 28- 37.
doi: 10.1089/jop.2015.0071 |
49 |
KIM S A , SHIM J , KANG S , et al. Inter-device agreement between spectral domain optical coherence tomography, ultrasound biomicroscopy, and gonioscopy in evaluating the iridocorneal angle in normotensive dogs[J]. J Vet Sci, 2023, 24 (4): e34.
doi: 10.4142/jvs.22241 |
50 |
SHIM J , KANG S , JEONG Y , et al. Comparison of iridocorneal angle parameters measured by spectral domain optical coherence tomography and ultrasound biomicroscopy in dogs[J]. Vet Ophthalmol, 2022, 25 (S1): 103- 110.
doi: 10.1111/vop.12950 |
51 |
TSAI S , ALMAZAN A , LEE S S , et al. The effect of topical latanoprost on anterior segment anatomic relationships in normal dogs[J]. Vet Ophthalmol, 2013, 16 (5): 370- 376.
doi: 10.1111/vop.12011 |
52 |
ZWOLSKA J , BALICKI I , BALICKA A . Morphological and morphometric analysis of canine choroidal layers using spectral domain optical coherence tomography[J]. Int J Environ Res Public Health, 2023, 20 (4): 3121.
doi: 10.3390/ijerph20043121 |
53 |
HERNANDEZ-MERINO E , KECOVA H , JACOBSON S J , et al. Spectral domain optical coherence tomography (SD-OCT) assessment of the healthy female canine retina and optic Nerve[J]. Vet Ophthalmol, 2011, 14 (6): 400- 405.
doi: 10.1111/j.1463-5224.2011.00887.x |
54 |
BEMIS A M , PIRIE C G , LOPINTO A J , et al. Reproducibility and repeatability of optical coherence tomography imaging of the optic nerve head in normal beagle Eyes[J]. Vet Ophthalmol, 2017, 20 (6): 480- 487.
doi: 10.1111/vop.12451 |
55 | MISCHI E , SOUKUP P , HARMAN C D , et al. Outer retinal thickness and visibility of the choriocapillaris in four distinct retinal regions imaged with spectral domain optical coherence tomography in dogs and cats[J]. Vet Ophthalmol, 2022, 25 (Suppl 1): 122- 135. |
56 |
OCCELLI L M , PASMANTER N , AYOUB E E , et al. Changes in retinal layer thickness with maturation in the dog: An in vivo spectral domain-optical coherence tomography imaging study[J]. BMC Vet Res, 2020, 16 (1): 225.
doi: 10.1186/s12917-020-02390-8 |
57 |
CHOI K E , ANH V T Q , OH J H , et al. Normative data of axial length, retinal thickness measurements, visual evoked potentials, and full-field electroretinography in female, wild-type minipigs[J]. Transl Vis Sci Technol, 2021, 10 (12): 3.
doi: 10.1167/tvst.10.12.3 |
58 |
DUFOUR V L , YU Y , PAN W , et al. In-vivo longitudinal changes in thickness of the postnatal canine retina[J]. Exp Eye Res, 2020, 192, 107926.
doi: 10.1016/j.exer.2020.107926 |
59 |
AHN S M , AHN J , CHA S , et al. Morphologic and electrophysiologic findings of retinal degeneration after intravitreal sodium iodate injection following vitrectomy in canines[J]. Sci Rep, 2020, 10 (1): 3588.
doi: 10.1038/s41598-020-60579-1 |
60 |
GEKELER F , GMEINER H , VÖLKER M , et al. Assessment of the posterior segment of the cat eye by optical coherence tomography (OCT)[J]. Vet Ophthalmol, 2007, 10 (3): 173- 178.
doi: 10.1111/j.1463-5224.2007.00532.x |
61 | SATO Y , GRAY A , TAKAHASHI K , et al. Monocular retinopathy of prematurity-like retinal vasculopathy in a dog[J]. Vet Ophthalmol, 2022, 25 (1) |
62 |
NAGAOKA T , TANI T , SONG Y S , et al. Evaluation of retinal circulation using segmental-scanning doppler optical coherence tomography in anesthetized cats[J]. Invest Ophthalmol Vis Sci, 2016, 57 (7): 2936- 2941.
doi: 10.1167/iovs.15-18303 |
63 |
SCHAEFER E A F , WHITING R E H , PEARCE J W , et al. Bilateral retinoschisis in a dog: A veterinary clinical application for optical coherence tomography[J]. Vet Ophthalmol, 2018, 21 (6): 668- 674.
doi: 10.1111/vop.12557 |
64 | GRAY A P , SATO Y , MIYADERA K , et al. Novel insights into chorioretinal and juxtapapillary colobomas by optical coherence tomography[J]. Vet Ophthalmol, 2022, 25 (Suppl 1): 136- 143. |
65 |
ANNEAR M J , MOWAT F M , OCCELLI L M , et al. A comprehensive study of the retinal phenotype of rpe65-deficient dogs[J]. Cells, 2021, 10 (1): 115.
doi: 10.3390/cells10010115 |
66 |
BALICKI I , GOLEMAN M , BALICKA A . Ocular abnormalities in polish hunting dogs[J]. PLoS One, 2021, 16 (11): e0258636.
doi: 10.1371/journal.pone.0258636 |
67 |
CHO H , JEONG M , LEE S , et al. Comparison of the qualitative and quantitative optical coherence tomographic features between sudden acquired retinal degeneration syndrome and normal eyes in dogs[J]. Vet Ophthalmol, 2022, 25 (S1): 144- 163.
doi: 10.1111/vop.12975 |
68 |
SUSANTI L , KWON D , AHN J , et al. Unilateral blindness presumed as sudden acquired retinal degeneration syndrome (SARDS) in one dachshund and four maltese dogs[J]. Vet Ophthalmol, 2023, 26 (2): 169- 175.
doi: 10.1111/vop.13058 |
69 |
GRAHN B H , SANDMEYER L L , BREAUX C . Retinopathy of Coton de Tulear dogs: Clinical manifestations, electroretinographic, ultrasonographic, fluorescein and indocyanine green angiographic, and optical coherence tomographic findings[J]. Vet Ophthalmol, 2008, 11 (4): 242- 249.
doi: 10.1111/j.1463-5224.2008.00632.x |
70 |
RODARTE-ALMEIDA A C V , PETERSEN-JONES S , LANGOHR I M , et al. Retinal dysplasia in American pit bull terriers--phenotypic characterization and breeding study[J]. Vet Ophthalmol, 2016, 19 (1): 11- 21.
doi: 10.1111/vop.12243 |
71 |
WHITING R E H , PEARCE J W , CASTANER L J , et al. Multifocal retinopathy in dachshunds with CLN2 neuronal ceroid lipofuscinosis[J]. Exp Eye Res, 2015, 134, 123- 132.
doi: 10.1016/j.exer.2015.02.012 |
72 |
EKESTEN B , MÄKELÄINEN S , ELLIS S , et al. Abnormal appearance of the area centralis in labrador retrievers with an ABCA4 loss-of-function mutation[J]. Transl Vis Sci Technol, 2022, 11 (2): 36.
doi: 10.1167/tvst.11.2.36 |
73 |
PARK S A , RHODES J , IWABE S , et al. Quantitative and qualitative characterization of retinal dystrophies in canine models of inherited retinal diseases using spectral domain optical coherence tomography (SD-OCT)[J]. Exp Eye Res, 2022, 220, 109106.
doi: 10.1016/j.exer.2022.109106 |
74 |
PANZAN C Q , GÜVEN D , WEILAND J D , et al. Humayun MS. Retinal thickness in normal and RCD1 dogs using optical coherence tomography[J]. Ophthalmic Surg Lasers Imaging, 2004, 35 (6): 485- 493.
doi: 10.3928/1542-8877-20041101-09 |
75 |
APLIN F P , LUU C D , VESSEY K A , et al. ATP-induced photoreceptor death in a feline model of retinal degeneration[J]. Invest Ophthalmol Vis Sci, 2014, 55 (12): 8319- 8329.
doi: 10.1167/iovs.14-15732 |
76 |
AMUNO S , BEDOS L , KODZHAHINCHEV V , et al. Comparative study of arsenic toxicosis and ocular pathology in wild muskrats (Ondatra zibethicus) and red squirrels (Tamiasciurus hudsonicus) breeding in arsenic contaminated areas of Yellowknife, Northwest Territories (Canada)[J]. Chemosphere, 2020, 248, 126011.
doi: 10.1016/j.chemosphere.2020.126011 |
77 |
KEENAN A V , OSTER S , MCMULLEN Jr. R J . Clinical and pathologic evaluation of chorioretinal lesions in wild owl species[J]. Vet Ophthalmol, 2022, 25 (2): 128- 139.
doi: 10.1111/vop.12942 |
78 |
RAUSCHER F G , AZMANIS P , KÖRBER N , et al. Optical coherence tomography as a diagnostic tool for retinal pathologies in avian ophthalmology[J]. Invest Ophthalmol Vis Sci, 2013, 54 (13): 8259- 8269.
doi: 10.1167/iovs.13-11922 |
79 |
LEE D C , XU J , SARUNIC M V , et al. Fourier domain optical coherence tomography as a noninvasive means for in vivo detection of retinal degeneration in Xenopus laevis Tadpoles[J]. Invest Ophthalmol Vis Sci, 2010, 51 (2): 1066- 1070.
doi: 10.1167/iovs.09-4260 |
80 |
GONZALEZ-ALONSO-ALEGRE E M , RODRIGUEZ-ALVARO A , ESTEBAN-MARTÍN J . Atypical chorioretinal coloboma in a Golden Retriever: A retinographic, fluoroangiographic, and optical coherence tomography study[J]. Vet Ophthalmol, 2016, 19 (6): 525- 530.
doi: 10.1111/vop.12328 |
81 |
OSINCHUK S C , LEIS M L , SALPETER E M , et al. Evaluation of retinal morphology of canine sudden acquired retinal degeneration syndrome using optical coherence tomography and fluorescein Angiography[J]. Vet Ophthalmol, 2019, 22 (4): 398- 406.
doi: 10.1111/vop.12602 |
82 |
RIPOLLES-GARCIA A , RUTHEL G , YING G S , et al. Characterization of the canine retinal vasculature with optical coherence tomography angiography: Comparisons with histology and fluorescein angiography[J]. Front Neuroanat, 2021, 15, 785249.
doi: 10.3389/fnana.2021.785249 |
83 | RIPOLLES-GARCIA A , HOLLE D M , COHEN J A , et al. Retinal structural and microvascular abnormalities in retinal dysplasia imaged by OCT and OCT angiography[J]. Vet Ophthalmol, 2022, 25 (Suppl 1): 193- 200. |
84 |
RIPOLLES-GARCIA A , CHEN Y , SATO Y , et al. Retinal vascular plexuses are unequally affected in canine inherited retinal degenerations[J]. Invest Ophthalmol Vis Sci, 2022, 63 (12): 22.
doi: 10.1167/iovs.63.12.22 |
85 |
WADA T , SONG Y , OOMAE T , et al. Longitudinal changes in retinal blood flow in a feline retinal vein occlusion model as measured by doppler optical coherence tomography and optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2020, 61 (2): 34.
doi: 10.1167/iovs.61.2.34 |
86 |
DA SILVA M-A O , HEEGAARD S , WANG T , et al. Morphology of the snake spectacle reflects its evolutionary adaptation and development[J]. BMC Vet Res, 2017, 13 (1): 258.
doi: 10.1186/s12917-017-1193-2 |
87 |
COLLERY R F , VETH K N , DUBIS A M , et al. Rapid, accurate, and non-invasive measurement of zebrafish axial length and other eye dimensions using SD-OCT allows longitudinal analysis of myopia and emmetropization[J]. PloS One, 2014, 9 (10): e110699.
doi: 10.1371/journal.pone.0110699 |
88 | SHIM J , KANG S , LEE E , et al. Evaluation of the upper and lower proximal lacrimal canaliculi using Spectral-domain optical coherence tomography in normal Beagle dogs[J]. Vet Ophthalmol, 2022, 25 (Suppl 1): 96- 102. |
89 |
YOON H J , PARK S , KIM J Y . Tear clearance rate in dogs: Measurement using anterior segment optical coherence Tomography[J]. Vet Med Sci, 2024, 10 (1): e1334.
doi: 10.1002/vms3.1334 |
90 |
LEONARD B C , STEWART K A , SHAW G C , et al. Comprehensive clinical, diagnostic, and advanced imaging characterization of the ocular surface in spontaneous aqueous deficient dry eye disease in dogs[J]. Cornea, 2019, 38 (12): 1568- 1575.
doi: 10.1097/ICO.0000000000002081 |
91 |
KOSSLER A L , WANG J , FEUER W , et al. Neurostimulation of the lacrimal nerve for enhanced tear production[J]. Ophthalmic Plast Reconstr Surg, 2015, 31 (2): 145- 151.
doi: 10.1097/IOP.0000000000000234 |
92 |
SUNG H , KANG S , LEE S , et al. Evaluation of changes in lacrimal canaliculi width depending on temperature and viscosity of eye drops using Spectral-domain optical coherence tomography in dogs[J]. Vet Ophthalmol, 2024,
doi: 10.1111/vop.13250 |
93 |
GELATT K N , MACKAY E O . Prevalence of the breed-related glaucomas in pure-bred dogs in North America[J]. Vet Ophthalmol, 2004, 7 (2): 97- 111.
doi: 10.1111/j.1463-5224.2004.04006.x |
94 |
GRAHAM K L , MCCOWAN C I , CARUSO K , et al. Optical coherence tomography of the retina, nerve fiber layer, and optic nerve head in dogs with Glaucoma[J]. Vet Ophthalmol, 2020, 23 (1): 97- 112.
doi: 10.1111/vop.12694 |
95 |
SCHUMAN J S , PEDUT-KLOIZMAN T , PAKTER H , et al. Optical coherence tomography and histologic measurements of nerve fiber layer thickness in normal and glaucomatous monkey eyes[J]. Invest Ophthalmol Vis Sci, 2007, 48 (8): 3645- 3654.
doi: 10.1167/iovs.06-0876 |
96 | GROZDANIC S D , MATIC M , BETTS D M , et al. Recovery of canine retina and optic nerve function after acute elevation of intraocular pressure: Implications for canine glaucoma treatment[J]. Vet Ophthalmol, 2007, 10 (Suppl 1): 101- 107. |
97 |
SNYDER K C , OIKAWA K , WILLIAMS J , et al. Imaging distal aqueous outflow pathways in a spontaneous model of congenital glaucoma[J]. Transl Vis Sci Technol, 2019, 8 (5): 22.
doi: 10.1167/tvst.8.5.22 |
98 |
SCHALLEK J B , MCLELLAN G J , VISWANATHAN S , et al. Retinal intrinsic optical signals in a cat model of primary congenital glaucoma[J]. Invest Ophthalmol Vis Sci, 2012, 53 (4): 1971- 1981.
doi: 10.1167/iovs.11-8299 |
99 | ZHAO Q , QIAN X , LI L , et al. Effect of elevated intraocular pressure on the thickness changes of cat laminar and prelaminar tissue using optical coherence tomography[J]. Biomed Mater Eng, 2014, 24 (6): 2349- 2360. |
100 |
SUH M H , JUNG D H , WEINREB R N , et al. Optic disc microvasculature dropout in glaucoma detected by swept-source optical coherence tomography angiography[J]. Am J Ophthalmol., 2022, 236, 261- 270.
doi: 10.1016/j.ajo.2021.10.029 |
101 | OCCELLI L M , PIRIE C G , PETERSEN-JONES S M . Non-invasive optical coherence tomography angiography: A comparison with fluorescein and indocyanine green angiography in normal adult dogs and cats[J]. Vet Ophthalmol, 2022, 25 (Suppl 1): 164- 178. |
102 |
AKIYAMA G , SARASWATHY S , BOGARIN T , et al. Functional, structural, and molecular identification of lymphatic outflow from subconjunctival blebs[J]. Exp Eye Res, 2020, 196, 108049.
doi: 10.1016/j.exer.2020.108049 |
103 | TELLE M R , SNYDER K C , OIKAWA K , et al. Development and validation of methods to visualize conventional aqueous outflow pathways in canine primary angle closure glaucoma[J]. Vet Ophthalmol, 2022, 25 (Suppl 1): 84- 95. |
104 | XU H , SAPIENZA J S , JIN Y , et al. Lamellar keratoplasty using acellular bioengineering cornea (BioCorneaVetTM) for the treatment of feline corneal sequestrum: A retrospective study of 62 eyes (2018-2021)[J]. Animals (Basel), 2022, 12 (8) |
105 | 胥辉豪, 郑小波, 李启卷, 等. 猫坏死性角膜炎的组织工程角膜深板层移植治疗[J]. 动物医学进展, 2022, 43 (11): 135- 139. |
XU H H , ZHENG X B , LI Q J , et al. Treatment of sequestrum in cats with new biological tisue enginering deep lamelar keratoplasty[J]. Progres in Veterinary Medicine, 2022, 43 (11): 135- 139. | |
106 |
DULAURENT T , AZOULAY T , GOULLE F , et al. Use of bovine pericardium (Tutopatch®) graft for surgical repair of deep melting corneal ulcers in dogs and corneal sequestra in cats[J]. Vet Ophthalmol, 2014, 17 (2): 91- 99.
doi: 10.1111/vop.12047 |
107 |
JUAREZ A , DJALLALI M , PICHÉ M , et al. A liquid hydrogel to restore long term corneal integrity after perforating and non-perforating trauma in feline eyes[J]. Front Bioeng Biotechnol, 2021, 9, 773294.
doi: 10.3389/fbioe.2021.773294 |
108 |
BRUNETTE I , ROSOLEN S G , CARRIER M , et al. Comparison of the pig and feline models for full thickness corneal transplantation[J]. Vet Ophthalmol, 2011, 14 (6): 365- 377.
doi: 10.1111/j.1463-5224.2011.00886.x |
109 |
PROULX S , BENSAOULA T , NADA O , et al. Transplantation of a tissue-engineered corneal endothelium reconstructed on a devitalized carrier in the feline model[J]. Invest Ophthalmol Vis Sci, 2009, 50 (6): 2686- 2694.
doi: 10.1167/iovs.08-2793 |
110 |
BOO G , WHITTAKER C J G , CARUSO K A , et al. Early postoperative results of Descemet's stripping endothelial keratoplasty in six dogs with corneal endothelial dystrophy[J]. Vet Ophthalmol, 2019, 22 (6): 879- 890.
doi: 10.1111/vop.12666 |
111 |
HORIKAWA T , THOMASY S M , STANLEY A A , et al. Superficial keratectomy and conjunctival advancement hood flap (SKCAHF) for the management of bullous keratopathy: validation in dogs with spontaneous disease[J]. Cornea, 2016, 35 (10): 1295- 1304.
doi: 10.1097/ICO.0000000000000966 |
112 |
GÜVEN D , WEILAND J D , MAGHRIBI M , et al. Implantation of an inactive epiretinal poly(dimethyl siloxane) electrode array in dogs[J]. Exp Eye Res, 2006, 82 (1): 81- 90.
doi: 10.1016/j.exer.2005.05.008 |
113 |
DANIELEWSKA M E , ANTONCZYK A , ANDRADE DE JESUS D , et al. Corneal optical coherence tomography speckle in crosslinked and untreated rabbit eyes in response to elevated intraocular pressure[J]. Transl Vis Sci Technol, 2021, 10 (5): 2.
doi: 10.1167/tvst.10.5.2 |
114 |
DUFOUR V L , COHEN J A , HOLLE D M , et al. Optic nerve colobomas associated with unilateral focal serous retinal detachment in a dog-in-vivo imaging and outcome following laser retinopexy[J]. Vet Ophthalmol, 2021, 24 (6): 645- 652.
doi: 10.1111/vop.12948 |
115 |
HWANG S S , KIM J E , CHUN B-K , et al. New model of subconjunctival tumor development in rabbits[J]. J Biomed Opt, 2013, 18 (7): 070501.
doi: 10.1117/1.JBO.18.7.070501 |
116 | ZHENG Y , XIAO R , WANG Y , et al. A generative model for OCT retinal layer segmentation by integrating graph-based multi-surface searching and image registration[J]. Med Image Comput Comput Assist Interv, 2013, 16 (Pt 1): 428- 435. |
117 |
ROSOLEN S G , RIVIÈRE M-L K , LAVILLEGRAND S , et al. Use of a combined Slit-lamp SD-OCT to obtain anterior and posterior segment images in selected animal species[J]. Vet Ophthalmol, 2012, 15 (S2): 105- 115.
doi: 10.1111/j.1463-5224.2012.01037.x |
118 |
TAO Y K , EHLERS J P , TOTH C A , et al. Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery[J]. Opt Let, 2010, 35 (20): 3315- 3317.
doi: 10.1364/OL.35.003315 |
119 |
LAPIERRE-LANDRY M , HUCKENPAHLER A L , LINK B A , et al. Imaging melanin distribution in the zebrafish retina using photothermal optical coherence tomography[J]. Transl Vis Sci Technol, 2018, 7 (5): 4.
doi: 10.1167/tvst.7.5.4 |
120 |
SAVAGE D E , BROOKS D R , DEMAGISTRIS M , et al. First demonstration of ocular refractive change using blue-IRIS in live cats[J]. Invest Ophthalmol Vis Sci, 2014, 55 (7): 4603- 4612.
doi: 10.1167/iovs.14-14373 |
[1] | 王志浩, 郭龙, 王培莉, 李建基, 王亨. 细胞焦亡及其在角膜炎疾病中的作用机制研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1089-1099. |
[2] | 胥辉豪, 冯雪倩, 朴雪玲, 慎晓军, 郑小波, 杨恒, 林珈好, 金艺鹏, 林德贵. 猫角膜缘干细胞不同采集、分离与培养鉴定方法的对比研究[J]. 畜牧兽医学报, 2023, 54(7): 3091-3101. |
[3] | 胥辉豪, 焦弋恩, 郑小波, 张志鹏, 杨丽辉, 林金洲, 王力波, 唐静, 李启卷, 刘江渝, 陈子洋, 胡小艳, 朴雪玲, 张慧, 甘玲. 新型生物组织工程角膜移植治疗犬猫角膜疾病的回顾性分析[J]. 畜牧兽医学报, 2023, 54(10): 4389-4402. |
[4] | 孙博,张文秀,吴芳春,马月辉,沙伟,关伟军. 胎牛视网膜干细胞向神经细胞诱导研究[J]. 畜牧兽医学报, 2014, 45(4): 559-565. |
[5] | 周庆国;刘为民;侯加法. 犬穿透性角膜移植术后血清TNF-α、IL-2和β-EP的动态变化[J]. 畜牧兽医学报, 2008, 39(6): 804-809. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||