畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (3): 1189-1202.doi: 10.11843/j.issn.0366-6964.2025.03.020
胡鑫1,2(), 游伟1,2, 姜富贵1,2, 成海建1,2, 孙志刚3, 宋恩亮1,2,*(
)
收稿日期:
2024-09-26
出版日期:
2025-03-23
发布日期:
2025-04-02
通讯作者:
宋恩亮
E-mail:huxin19890803@163.com;enliangs@126.com
作者简介:
胡鑫(1989-),女,辽宁盘锦人,助理研究员,博士,主要从事肉牛遗传育种的研究,Tel: 0531-66655139,E-mail: huxin19890803@163.com
基金资助:
HU Xin1,2(), YOU Wei1,2, JIANG Fugui1,2, CHENG Haijian1,2, SUN Zhigang3, SONG Enliang1,2,*(
)
Received:
2024-09-26
Online:
2025-03-23
Published:
2025-04-02
Contact:
SONG Enliang
E-mail:huxin19890803@163.com;enliangs@126.com
摘要:
旨在对西门塔尔牛群体遗传多样性和遗传结构进行分析,为配种方案和遗传改良提供理论依据。本研究对149头西门塔尔牛的全基因组进行了重测序,并利用这些基因组数据获取的高质量单核苷酸多态性(single-nucleotide polymorphisms, SNPs)位点,对其遗传结构、连续纯合片段(runs of homozygosity, ROH)以及其亲缘关系和家系构建等方面进行了深入的分析。结果显示,149头西门塔尔牛平均测序深度为5×,质控后共鉴定到1 265 356个SNPs位点,平均最小等位基因频率为0.067,平均多态信息含量为0.083,平均观察杂合度为0.121,平均期望杂合度为0.157。亲缘关系G矩阵与状态同源(identical by state, IBS)遗传距离矩阵具有相似的结果,大部分个体间的亲缘关系呈中等水平。在149头西门塔尔牛个体中,共检测到70个基因组ROH,且ROH总长度为127 627.935 kb,其中有98.57%的ROH是长度介于在1~5 Mb之间。基于ROH计算得到的近交系数为0.000 3,提示近亲繁殖程度不高。此外,进化树分析将这149头西门塔尔牛划分成为22个不同的家系分支。综上所述,西门塔尔牛群体表现出相对丰富的多样性和适度的亲缘关系。在少数个体中观察到近亲繁殖,但种群的整体近亲繁殖水平仍然很低。
中图分类号:
胡鑫, 游伟, 姜富贵, 成海建, 孙志刚, 宋恩亮. 基于全基因组重测序分析西门塔尔牛遗传多样性与群体结构[J]. 畜牧兽医学报, 2025, 56(3): 1189-1202.
HU Xin, YOU Wei, JIANG Fugui, CHENG Haijian, SUN Zhigang, SONG Enliang. Analysis of Genetic Diversity and Population Structure of Simmental Cattle Based on Whole Genome Resequencing[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1189-1202.
表 1
西门塔尔牛群SNPs质控统计"
质量控制标准Quality control standard | SNPs标记数Number of SNPs |
标记总数Total number of SNPs | 29 421 284 |
最小等位基因频率 < 0.01的标记SNPs with MAF < 0.01 | 8 115 966 |
哈代-温伯格平衡检验P< 10-6的标记 SNPs notin Hardy-Weinberg equilibriumP< 10-6 | 296 458 |
SNP检出率 < 0.90 SNPs with call rate <0.90 | 10 760 983 |
R2>0.2的标记SNPs with R2>0.2 | 7 535 078 |
通过质量控制的SNP数SNPs used after quality control | 1 265 356 |
表 3
西门塔尔牛群家系划分结果"
家系名称Family name | 性别Gender | 个体号Individual number | |||||
家系1 Family 1 | 公 | G231964 | |||||
家系1 Family 1 | 母 | M211829 | M211471 | M200990 | |||
家系2 Family 2 | 公 | 3777 | G231304 | G231485 | G231527 | G231592 | G231847 |
G231852 | G231884 | G231265 | G231594 | G231914 | G231501 | ||
G231582 | G231591 | G231851 | G231866 | G231541 | G231540 | ||
G231838 | G231966 | G231915 | G231817 | G231970 | G231492 | ||
G231466 | G231640 | G231932 | G231503 | G231590 | G231507 | ||
G231885 | G231895 | G231855 | G231443 | G231801 | G231524 | ||
家系2 Family 2 | 母 | M200343 | M200592 | M180098 | 210133 | M210158 | M211330 |
家系3 Family 3 | 公 | G231161 | G231207 | G231515 | G231566 | G231570 | G231588 |
G231589 | G231600 | G231615 | G231618 | G231626 | G231638 | ||
G231648 | |||||||
家系3 Family 3 | 母 | M211611 | M190268 | M190393 | M190352 | M190366 | M190216 |
M201391 | M211829 | M200650 | M200990 | M200640 | M211812 | ||
M200197 | M200323 | M210123 | M201260 | M201387 | |||
家系4 Family 4 | 公 | G231607 | G231809 | G231823 | G231829 | G231840 | G231854 |
G231874 | G231881 | G231899 | G231902 | G231903 | G231905 | ||
G231917 | G231923 | G231933 | G231938 | G231951 | G231954 | ||
G231967 | G231969 | G231971 | |||||
家系4 Family 4 | 母 | M211812 | M190216 | M211772 | M211829 | M191691 | M200197 |
家系5 Family 5 | 公 | G231924 | G231937 | ||||
家系5 Family 5 | 母 | M200640 | M191691 | M190352 | M190268 | ||
家系6 Family 6 | 公 | G231419 | G231587 | G231932 | G231592 | ||
家系6 Family 6 | 母 | M200343 | M211330 | 210133 | M200686 | M210248 | M200592 |
M210158 | |||||||
家系7 Family 7 | 公 | G231265 | G231466 | G231492 | G231501 | G231503 | G231582 |
G231591 | G231817 | G231838 | G231877 | G231884 | G231485 | ||
3777 | G231558 | G231914 | G231507 | G231439 | G231640 | ||
G231544 | G231592 | G231847 | G231852 | G231590 | G231609 | ||
G231304 | G231575 | G231895 | G231527 | G231540 | G231467 | ||
G231624 | G231851 | G231583 | G231808 | G231541 | G231802 | ||
G231601 | G231915 | G231885 | |||||
家系7 Family 7 | 母 | M200343 | M200197 | M180098 | |||
家系8 Family 8 | 公 | G231467 | G231541 | G231624 | G231817 | G231852 | G231808 |
G231885 | G231527 | G231794 | G231970 | G231838 | G231966 | ||
G231802 | G231915 | ||||||
家系8 Family 8 | 母 | M200197 | |||||
家系9 Family 9 | 公 | G231439 | G231914 | G231866 | G231265 | G231507 | G231800 |
G231966 | G231592 | G231304 | G231503 | G231885 | G231817 | ||
G231871 | |||||||
家系9 Family 9 | 母 | M200343 | |||||
家系10 Family 10 | 公 | G231575 | G231866 | G231540 | G231884 | G231501 | G231558 |
G231485 | G231439 | ||||||
家系10 Family 10 | 母 | ||||||
家系11 Family 11 | 公 | G231507 | G231524 | G231855 | G231592 | G231265 | G231439 |
G231851 | G231914 | G231852 | G231471 | G231847 | |||
家系11 Family 11 | 母 | M200592 | M200343 | M180098 | |||
家系12 Family 12 | 公 | G231544 | G231594 | G231885 | G231582 | G231808 | G231877 |
G231265 | G231443 | G231915 | G231592 | 3777 | G231541 | ||
G231852 | G231884 | G231914 | G231601 | G231640 | |||
家系12 Family 12 | 母 | M200343 | |||||
家系13 Family 13 | 公 | G231583 | G231915 | G231941 | G231966 | G231584 | G231838 |
G231640 | G231802 | G231877 | G231594 | G231884 | G231527 | ||
G231624 | G231482 | G231913 | G231439 | ||||
家系13 Family 13 | 母 | ||||||
家系14 Family 14 | 公 | G231558 | G231265 | G231540 | G231575 | G231617 | |
家系14 Family 14 | 母 | M201164 | |||||
家系15 Family 15 | 公 | G231471 | G231800 | G231762 | G231507 | G231895 | G231794 |
G231801 | G231947 | G231439 | G231640 | ||||
家系15 Family 15 | 母 | ||||||
家系16 Family 16 | 公 | G231584 | G231590 | G231601 | G231895 | G231583 | G231492 |
G231592 | G231847 | G231970 | G231884 | G231802 | G231885 | ||
G231482 | G231800 | G231540 | G231947 | G231501 | G231838 | ||
家系16 Family 16 | 母 | M200343 | |||||
家系17 Family 17 | 公 | G231620 | G231802 | G231640 | G231624 | G231617 | G231601 |
G231583 | G231877 | ||||||
家系17 Family 17 | 母 | M201164 | |||||
家系18 Family 18 | 公 | G231640 | G231762 | G231871 | G231970 | G231592 | G231620 |
G231583 | G231265 | G231800 | G231885 | G231591 | G231471 | ||
G231609 | G231914 | G231852 | G231541 | G231590 | G231527 | ||
家系18 Family 18 | 母 | M200343 | |||||
家系19 Family 19 | 公 | G231801 | G231800 | G231852 | |||
家系19 Family 19 | 母 | ||||||
家系20 Family 20 | 公 | G231482 | G231540 | G231941 | G231913 | G231601 | G231591 |
G231527 | G231838 | G231575 | G231558 | G231851 | G231895 | ||
G231617 | |||||||
家系20 Family 20 | 母 | M201164 | M180098 | ||||
家系21 Family 21 | 公 | G231808 | G231913 | G231541 | G231794 | G231877 | G231838 |
G231544 | G231624 | G231482 | G231966 | ||||
家系21 Family 21 | 母 | ||||||
家系22 Family 22 | 公 | G231609 | G231617 | G231794 | G231851 | G231871 | G231817 |
G231492 | G231802 | G231540 | G231558 | G231541 | G231808 | ||
G231624 | G231800 | G231838 | G231507 | G231524 | G231304 | ||
家系22 Family22 | 母 | M200343 | M200592 | M201164 | M180098 | ||
其他Others | M210274 | M200695 | 220235 | 211609 | M210916 | M210586 | |
M210751 | M181734 | M220118 | M211423 | M211712 | M182050 | ||
M181232 | M180517 | M180374 | M181080 | M181429 | M191452 | ||
M180020 | M200095 | M201284 |
1 |
KARDOSM,ARMSTRONGE E,FITZPATRICKS W,et al.The crucial role of genome-wide genetic variation in conservation[J].Proc Natl Acad Sci U S A,2021,118(48):e2104642118.
doi: 10.1073/pnas.2104642118 |
2 |
STANGEM,BARRETTR D H,HENDRYA P.The importance of genomic variation for biodiversity, ecosystems and people[J].Nat Rev Genet,2021,22(2):89-105.
doi: 10.1038/s41576-020-00288-7 |
3 | SHASTRY B S. SNPs: impact on gene function and phenotype[M]//KOMAR A A. Single Nucleotide Polymorphisms. Totowa: Humana Press, 2009: 3-22. |
4 |
SCHUSTERS C.Next-generation sequencing transforms today's biology[J].Nat Methods,2008,5(1):16-18.
doi: 10.1038/nmeth1156 |
5 | 石兰,马梅兰,木合塔帕·买买提江,等.基于全基因组重测序解析皮山红羊群体遗传结构及产羔数候选基因研究[J].中国畜牧兽医,2024,51(2):624-638. |
SHIL,MAM L,MUHETAPAM,et al.Study on the genetic structure and litter size candidate genes of Pishan red sheep population based on whole genome resequencing[J].China Animal Husbandry & Veterinary Medicine,2024,51(2):624-638. | |
6 | HUM Y,JIANGH,LAIW N,et al.Assessing genomic diversity and signatures of selection in Chinese red steppe cattle using high-density SNP array[J].Animals (Basel),2023,13(10):1717. |
7 |
PERINIF,CENDRONF,WUZ,et al.Genomics of dwarfism in Italian local chicken breeds[J].Genes (Basel),2023,14(3):633.
doi: 10.3390/genes14030633 |
8 | SUDRAJADP,KUSMINANTOR Y,VOLKANDARIS D,et al.Genomic structure of Bali cattle based on linkage disequilibrium and effective population size analyses using 50K single nucleotide polymorphisms data[J].Vet World,2022,15(2):449-454. |
9 |
PALTIY,VALLEJOR L,PURCELLM K,et al.Genome-wide association analysis of the resistance to infectious hematopoietic necrosis virus in two rainbow trout aquaculture lines confirms oligogenic architecture with several moderate effect quantitative trait loci[J].Front Genet,2024,15,1394656.
doi: 10.3389/fgene.2024.1394656 |
10 |
HEIDARITABARM,BINKM C A M,DERVISHIE,et al.Genome-wide association studies for additive and dominance effects for body composition traits in commercial crossbred Piétrain pigs[J].J Anim Breed Genet,2023,140(4):413-430.
doi: 10.1111/jbg.12768 |
11 |
MASTRANGELOS,BEN-JEMAAS,PERINIF,et al.Genome-wide mapping of signatures of selection using a high-density array identified candidate genes for growth traits and local adaptation in chickens[J].Genet Sel Evol,2023,55(1):20.
doi: 10.1186/s12711-023-00790-6 |
12 |
VAN DIJKE L,AUGERH,JASZCZYSZYNY,et al.Ten years of next-generation sequencing technology[J].Trends Genet,2014,30(9):418-426.
doi: 10.1016/j.tig.2014.07.001 |
13 |
HARISHA,LOPES PINTOF A,ERIKSSONS,et al.Genetic diversity and recent ancestry based on whole-genome sequencing of endangered Swedish cattle breeds[J].BMC Genomics,2024,25(1):89.
doi: 10.1186/s12864-024-09959-9 |
14 | 严霞,莫玙,孔少芬,等.基于全基因组重测序的罗坑鸡遗传结构分析及特征位点挖掘[J].中国畜牧杂志,2024,60(10):100-105. |
YANX,MOY,KONGS F,et al.Genetic structure analysis and feature loci mining of Luokeng chickens based on whole genome resequencing[J].Chinese Journal of Animal Science,2024,60(10):100-105. | |
15 |
梁慧丽,解玉静,司博文,等.基于全基因组重测序分析大尾寒羊基因组变异特征和群体结构[J].畜牧兽医学报,2024,55(11):4968-4979.
doi: 10.11843/j.issn.0366-6964.2024.11.016 |
LIANGH L,XIEY J,SIB W,et al.Analysis on genomic variation and population structure of large-tailed Han sheep based on whole genome resequencing[J].Acta Veterinaria et Zootechnica Sinica,2024,55(11):4968-4979.
doi: 10.11843/j.issn.0366-6964.2024.11.016 |
|
16 |
赵真坚,王书杰,陈栋,等.基于低深度全基因组测序分析内江猪群体结构和遗传多样性[J].畜牧兽医学报,2023,54(6):2297-2307.
doi: 10.11843/j.issn.0366-6964.2023.06.010 |
ZHAOZ J,WANGS J,CHEND,et al.Population structure and genetic diversity analysis of Neijiang pigs based on low-coverage whole genome sequencing[J].Acta Veterinaria et Zootechnica Sinica,2023,54(6):2297-2307.
doi: 10.11843/j.issn.0366-6964.2023.06.010 |
|
17 | 刘珍妮,成笛,孔智伟,等.基于全基因组重测序对大余鸭的遗传进化分析[J].中国畜牧杂志,2024,60(11):179-184. |
LIUZ N,CHENGD,KONGZ W,et al.Genetic and evolutionary analysis of Dayu duck based on whole genome resequencing[J].Chinese Journal of Animal Science,2024,60(11):179-184. | |
18 | 马钧,樊安平,王武生,等.全基因组重测序解析秦川牛保种群遗传多样性和遗传结构[J].遗传,2023,45(7):602-616. |
MAJ,FANP A,WANGW S,et al.Analysis of genetic diversity and genetic structure of Qinchuan cattle conservation population using whole-genome resequencing[J].Hereditas (Beijing),2023,45(7):602-616. | |
19 |
SUNT,PEIS W,LIUY K,et al.Whole genome sequencing of simmental cattle for SNP and CNV discovery[J].BMC Genomics,2023,24(1):179.
doi: 10.1186/s12864-023-09248-x |
20 |
LIS,LIUL,AHMEDZ,et al.Identification of Heilongjiang crossbred beef cattle pedigrees and reveals functional genes related to economic traits based on whole-genome SNP data[J].Front Genet,2024,15,1435793.
doi: 10.3389/fgene.2024.1435793 |
21 |
ZHUANGZ W,XUL Y,YANGJ,et al.Weighted single-step genome-wide association study for growth traits in Chinese Simmental beef cattle[J].Genes (Basel),2020,11(2):189.
doi: 10.3390/genes11020189 |
22 | DUL L,DUANX H,ANB X,et al.Genome-wide association study based on random regression model reveals candidate genes associated with longitudinal data in Chinese Simmental beef cattle[J].Animals (Basel),2021,11(9):2524. |
23 |
ZHAOG Y,LIUY Y,NIUQ H,et al.Runs of homozygosity analysis reveals consensus homozygous regions affecting production traits in Chinese Simmental beef cattle[J].BMC Genomics,2021,22(1):678.
doi: 10.1186/s12864-021-07992-6 |
24 |
PURCELLS,NEALEB,TODD-BROWNK,et al.PLINK: a tool set for whole-genome association and population-based linkage analyses[J].Am J Hum Genet,2007,81(3):559-575.
doi: 10.1086/519795 |
25 | 孙浩,王振,张哲,等.基于基因组测序数据的梅山猪保种现状分析[J].上海交通大学学报: 农业科学版,2017,35(4):65-70. |
SUNH,WANGZ,ZHANGZ,et al.Exploring the current situation of conservation of Meishan pigs based on genome sequencing data[J].Journal of Shanghai Jiaotong University: Agricultural Science,2017,35(4):65-70. | |
26 | BARBATOM,OROZCO-TERWENGELP,TAPIOM,et al.SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data[J].Front Genet,2015,6,109. |
27 |
SVEDJ A.Linkage disequilibrium and homozygosity of chromosome segments in finite populations[J].Theor Popul Biol,1971,2(2):125-141.
doi: 10.1016/0040-5809(71)90011-6 |
28 | BOTSTEIND,WHITER L,SKOLNICKM,et al.Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J].Am J Hum Genet,1980,32(3):314-331. |
29 |
VANRADENP M.Efficient methods to compute genomic predictions[J].J Dairy Sci,2008,91(11):4414-4423.
doi: 10.3168/jds.2007-0980 |
30 |
SILIÓL,RODRÍGUEZM C,FERNÁNDEZA,et al.Measuring inbreeding and inbreeding depression on pig growth from pedigree or SNP-derived metrics[J].J Anim Breed Genet,2013,130(5):349-360.
doi: 10.1111/jbg.12031 |
31 |
WANGX,MAZ,GAOL,et al.Genome-wide survey reveals the genetic background of Xinjiang Brown cattle in China[J].Front Genet,2024,14,1348329.
doi: 10.3389/fgene.2023.1348329 |
32 |
YUH W,ZHANGK,CHENGG,et al.Genome-wide analysis reveals genomic diversity and signatures of selection in Qinchuan beef cattle[J].BMC Genomics,2024,25(1):558.
doi: 10.1186/s12864-024-10482-0 |
33 | 张岩,魏稚彤,虎业浩,等.基于全基因组重测序评估郏县红牛保种群遗传多样性与群体结构[J].中国畜牧兽医,2024,51(7):2933-2942. |
ZHANGY,WEIZ T,HUY H,et al.Genetic diversity and population structure analysis of Jiaxian red cattle based on whole genome sequencing[J].China Animal Husbandry & Veterinary Medicine,2024,51(7):2933-2942. | |
34 | MELKAM G,SCHENKELF S.Analysis of genetic diversity in Brown Swiss, Jersey and Holstein populations using genome-wide single nucleotide polymorphism markers[J].BMC Res Notes,2012,5(1):161. |
35 | ZHANGW G,GAOX,ZHANGY,et al.Genome-wide assessment of genetic diversity and population structure insights into admixture and introgression in Chinese indigenous cattle[J].BMC Genet,2018,19(1):114. |
36 | HOFFMANNA A,WHITEV L,JASPERM,et al.An endangered flightless grasshopper with strong genetic structure maintains population genetic variation despite extensive habitat loss[J].Ecol Evol,2021,11(10):5364-5380. |
37 | KELLEHERM M,BERRYD P,KEARNEYJ F,et al.Inference of population structure of purebred dairy and beef cattle using high-density genotype data[J].Animal,2017,11(1):15-23. |
38 | CEBALLOSF C,JOSHIP K,CLARKD W,et al.Runs of homozygosity: windows into population history and trait architecture[J].Nat Rev Genet,2018,19(4):220-234. |
39 | 张鹏飞,史良玉,刘家鑫,等.畜禽全基因组长纯合片段检测的研究进展[J].中国农业科学,2021,54(24):5316-5326. |
ZHANGP F,SHIL Y,LIUJ X,et al.Advance in genome-wide scan of runs of homozygosity in domestic animals[J].Scientia Agricultura Sinica,2021,54(24):5316-5326. | |
40 | KELLERM C,VISSCHERP M,GODDARDM E.Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data[J].Genetics,2011,189(1):237-249. |
41 | KIRINM,MCQUILLANR,FRANKLINC S,et al.Genomic runs of homozygosity record population history and consanguinity[J].PLoS One,2010,5(11):e13996. |
42 | HOWRIGAND P,SIMONSONM A,KELLERM C.Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms[J].BMC Genomics,2011,12(1):460. |
43 | CARDOSOD F,FERNANDES JÚNIORG A,SCALEZD C B,et al.Uncovering sub-structure and genomic profiles in across-countries subpopulations of angus cattle[J].Sci Rep,2020,10(1):8770. |
[1] | 王浩宇, 马克岩, 李讨讨, 栗登攀, 赵箐, 马友记. 基于简化基因组测序评估小骨山羊群体遗传多样性和群体结构[J]. 畜牧兽医学报, 2025, 56(3): 1170-1179. |
[2] | 刘思宇, 张曼, 张岩, 魏稚彤, 祁兴磊, 高腾云, 刘贤, 梁栋, 付彤. 基于重测序数据评估南阳牛保种效果[J]. 畜牧兽医学报, 2024, 55(9): 3876-3886. |
[3] | 王婷, 张元庆, 闫益波, 上官明军, 郭宏宇, 王志武. “特藏寒羊”群体遗传结构分析与选择信号的对比分析[J]. 畜牧兽医学报, 2024, 55(7): 2913-2926. |
[4] | 屠芸, 曾雅楠, 张蒸豪, 洪瑞, 王震, 吴平, 周泽洋, 叶艺茹, 杜亚楠, 左福元, 张龚炜. 保种场涪陵水牛及西南地区水牛品种间遗传结构与ROH分析[J]. 畜牧兽医学报, 2024, 55(5): 1989-1998. |
[5] | 宋科林, 闫尊强, 王鹏飞, 程文昊, 李杰, 白雅琴, 孙国虎, 滚双宝. 基于SNP芯片分析徽县青泥黑猪遗传多样性和遗传结构[J]. 畜牧兽医学报, 2024, 55(3): 995-1006. |
[6] | 程昕琰, 王诗媛, 吉叶标, 黄思秀, 杨杰, 孟繁明, 张茂, 蔡更元, 刘琅青. 基于50K SNP芯片评估广东省四类地方猪保种群体的遗传结构[J]. 畜牧兽医学报, 2024, 55(12): 5464-5477. |
[7] | 徐扩卫, 李卓辉, 冷堂健, 熊宝, 周杰珑, 郭盘江, 王禹, 陈粉粉. 基于全基因组重测序SNP分析宁蒗高原鸡保种群的群体遗传多样性和群体遗传结构[J]. 畜牧兽医学报, 2024, 55(12): 5498-5510. |
[8] | 苟想珍, 杨军祥, 赵子惠, 冯玲霞, 陈万辉, 李玉洁, 张忠钰, 马克岩, 蒋东平, 常嵘, 文亚洲, 王珂, 马友记. 基于简化基因组测序(Super-GBS)的子午岭黑山羊保种群遗传结构评估[J]. 畜牧兽医学报, 2024, 55(10): 4334-4345. |
[9] | 李在文, 李响, 李小伟, 李飙, 江明锋. 基于GBS简化基因组测序数据重建麦洼牦牛保种群系谱[J]. 畜牧兽医学报, 2023, 54(9): 3710-3721. |
[10] | 杨晴, 巩静, 赵雪艳, 朱晓东, 耿立英, 张传生, 王继英. 芯片和重测序在猪遗传结构研究中的应用比较[J]. 畜牧兽医学报, 2023, 54(7): 2772-2782. |
[11] | 张任豹, 周东辉, 周李生, 高霄霄, 柳楠, 贺建宁. 基于70 K SNP芯片分析济宁青山羊保种群体的遗传结构[J]. 畜牧兽医学报, 2023, 54(7): 2836-2847. |
[12] | 赵真坚, 王书杰, 陈栋, 姬祥, 申琦, 余杨, 崔晟頔, 王俊戈, 陈子旸, 唐国庆. 基于低深度全基因组测序分析内江猪群体结构和遗传多样性[J]. 畜牧兽医学报, 2023, 54(6): 2297-2307. |
[13] | 陶璇, 杨雪梅, 梁艳, 刘一辉, 汪勇, 孔繁晶, 雷云峰, 杨跃奎, 王言, 安瑞, 杨坤, 吕学斌, 何志平, 顾以韧. 基于SNP芯片的丫杈猪保种群体遗传结构研究[J]. 畜牧兽医学报, 2023, 54(6): 2308-2319. |
[14] | 杨苏坤, 董依萌, 王洪亮, 赵喜堂, 陈旭, 邢秀梅. 基于mtDNA和Y染色体基因片段的塔河马鹿种公鹿遗传多样性分析[J]. 畜牧兽医学报, 2023, 54(6): 2402-2413. |
[15] | 龙熙, 陈力, 吴平先, 张廷焕, 潘红梅, 张亮, 王金勇, 郭宗义, 柴捷. 合川黑猪保种群遗传结构及选择信号分析[J]. 畜牧兽医学报, 2023, 54(5): 1854-1867. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||