1 |
马茹梦, 赵玉梁, 马明爽, 等. 不同猪源受体菌表达猪流行性腹泻病毒保护性抗原S1诱导免疫应答的比较研究[J]. 畜牧兽医学报, 2024, 55 (5): 2090- 2099.
|
|
MA R M , ZHAO Y L , MA M S , et al. Comparative study on the immune response induced by the different porcine receptor bacteria with expressing the protective antigen S1 of porcine epidemic diarrhea virus[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (5): 2090- 2099.
|
2 |
JUNG K , SAIF L J . Porcine epidemic diarrhea virus infection: etiology, epidemiology, pathogenesis and immunoprophylaxis[J]. Vet J, 2015, 204 (2): 134- 143.
doi: 10.1016/j.tvjl.2015.02.017
|
3 |
JUNG K , SAIF L J , WANG Q H . Porcine epidemic diarrhea virus (PEDV): an update on etiology, transmission, pathogenesis, and prevention and control[J]. Virus Res, 2020, 286, 198045.
doi: 10.1016/j.virusres.2020.198045
|
4 |
LI W T , LI H , LIU Y B , et al. New variants of porcine epidemic diarrhea virus, China, 2011[J]. Emerg Infect Dis, 2012, 18 (8): 1350- 1353.
doi: 10.3201/eid1803.120002
|
5 |
LEE C . Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus[J]. Virol J, 2015, 12, 193.
doi: 10.1186/s12985-015-0421-2
|
6 |
ANTAS M , OLECH M , SZCZOTKA-BOCHNIARZ A . Molecular characterization of porcine epidemic diarrhoea virus (PEDV) in Poland reveals the presence of swine enteric coronavirus (SeCoV) sequence in S gene[J]. PLoS One, 2021, 16 (10): e0258318.
doi: 10.1371/journal.pone.0258318
|
7 |
LI W T , VAN KUPPEVELD F J M , HE Q G , et al. Cellular entry of the porcine epidemic diarrhea virus[J]. Virus Res, 2016, 226, 117- 127.
doi: 10.1016/j.virusres.2016.05.031
|
8 |
VAN DIEP N , CHOIJOOKHUU N , FUKE N , et al. New tropisms of porcine epidemic diarrhoea virus (PEDV) in pigs naturally coinfected by variants bearing large deletions in the spike (S) protein and PEDVs possessing an intact S protein[J]. Transbound Emerg Dis, 2020, 67 (6): 2589- 2601.
doi: 10.1111/tbed.13607
|
9 |
LI Z W , MA Z Q , DONG L F , et al. Molecular mechanism of porcine epidemic diarrhea virus cell tropism[J]. mBio, 2022, 13 (2): e0373921.
doi: 10.1128/mbio.03739-21
|
10 |
PARK J E , CRUZ D J M , SHIN H J . Receptor-bound porcine epidemic diarrhea virus spike protein cleaved by trypsin induces membrane fusion[J]. Arch Virol, 2011, 156 (10): 1749- 1756.
doi: 10.1007/s00705-011-1044-6
|
11 |
HEALD-SARGENT T , GALLAGHER T . Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence[J]. Viruses, 2012, 4 (4): 557- 580.
doi: 10.3390/v4040557
|
12 |
WHITE J M , WHITTAKER G R . Fusion of enveloped viruses in endosomes[J]. Traffic, 2016, 17 (6): 593- 614.
doi: 10.1111/tra.12389
|
13 |
XIONG X L , TORTORICI M A , SNIJDER J , et al. Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections[J]. J Virol, 2018, 92 (4): e01628- 17.
|
14 |
SHANG J , ZHENG Y , YANG Y , et al. Cryo-electron microscopy structure of porcine deltacoronavirus spike protein in the prefusion state[J]. J Virol, 2018, 92 (4): e01556- 17.
|
15 |
尹宝英, 朱小甫, 郑红青, 等. 猪流行性腹泻病毒逃逸宿主天然免疫研究进展[J]. 动物医学进展, 2023, 44 (10): 89- 94.
|
|
YIN B Y , ZHU X F , ZHENG H Q , et al. Progress on porcine epidemic diarrhea virus escaping from host innate immunity[J]. Progress in Veterinary Medicine, 2023, 44 (10): 89- 94.
|
16 |
王巍, 贾凌云. 适配体筛选方法研究进展[J]. 分析化学, 2009, 37 (3): 454- 460.
|
|
WANG W , JIA L Y . Progress in aptamer screening methods[J]. Chinese Journal of Analytical Chemistry, 2009, 37 (3): 454- 460.
|
17 |
梁雨萱, 庞胜美, 刘梅, 等. 猪流行性腹泻疫苗研究进展[J]. 河南农业科学, 2023, 52 (8): 1- 10.
|
|
LIANG Y X , PANG S M , LIU M , et al. Research progress of porcine epidemic diarrhea vaccine for pigs[J]. Journal of Henan Agricultural Sciences, 2023, 52 (8): 1- 10.
|
18 |
WRAPP D , MCLELLAN J S . The 3. 1-angstrom cryo-electron microscopy structure of the porcine epidemic diarrhea virus spike protein in the prefusion conformation[J]. J Virol, 2019, 93 (23): e00923- 19.
|
19 |
LI F , LI W H , FARZAN M , et al. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor[J]. Science, 2005, 309 (5742): 1864- 1868.
doi: 10.1126/science.1116480
|
20 |
LU G W , HU Y W , WANG Q H , et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26[J]. Nature, 2013, 500 (7461): 227- 231.
doi: 10.1038/nature12328
|
21 |
WANG N S , SHI X L , JIANG L W , et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4[J]. Cell Res, 2013, 23 (8): 986- 993.
doi: 10.1038/cr.2013.92
|
22 |
WONG A H M , TOMLINSON A C A , ZHOU D X , et al. Receptor-binding loops in alphacoronavirus adaptation and evolution[J]. Nat Commun, 2017, 8 (1): 1735.
doi: 10.1038/s41467-017-01706-x
|
23 |
REGUERA J , SANTIAGO C , MUDGAL G , et al. Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies[J]. PLoS Pathog, 2012, 8 (8): e1002859.
doi: 10.1371/journal.ppat.1002859
|
24 |
DENG F , YE G , LIU Q Q , et al. Identification and comparison of receptor binding characteristics of the spike protein of two porcine epidemic diarrhea virus strains[J]. Viruses, 2016, 8 (3): 55.
doi: 10.3390/v8030055
|
25 |
SHIRATO K , MAEJIMA M , ISLAM MT , et al. Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity[J]. J Gen Virol, 2016, 97 (10): 2528- 2539.
doi: 10.1099/jgv.0.000563
|
26 |
SILWAL A P , THENNAKOON S K S , ARYA S P , et al. DNA aptamers inhibit SARS-CoV-2 spike-protein binding to hACE2 by an RBD-independent or dependent approach[J]. Theranostics, 2022, 12 (12): 5522- 5536.
doi: 10.7150/thno.74428
|
27 |
李卫滨, 王开宇, 赵猛, 等. 人FcγRI特异性核酸适配体的体外筛选及鉴定[J]. 中国生物化学与分子生物学报, 2017, 33 (8): 818- 825.
|
|
LI W B , WANG K Y , ZHAO M , et al. In vitro selection and identification of aptamers against human FcγRI[J]. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33 (8): 818- 825.
|
28 |
SUN M , LIU S W , WEI X Y , et al. Aptamer blocking strategy inhibits SARS-CoV-2 virus infection[J]. Angew Chem Int Ed Engl, 2021, 60 (18): 10266- 10272.
doi: 10.1002/anie.202100225
|
29 |
邹静娴, 孟慧, 潘朔楠, 等. 表达PEDV S蛋白重组仙台病毒的构建及其免疫原性研究[J]. 扬州大学学报: 农业与生命科学版, 2023, 44 (4): 43-50, 67.
|
|
ZOU J X , MENG H , PAN S N , et al. Construction and immunogenicity of a recombinant Sendai virus expressing S protein of PEDV[J]. Journal of Yangzhou University: Agricultural and Life Science Edition, 2023, 44 (4): 43-50, 67.
|
30 |
李洁森, 孙荣航, 邝燕齐, 等. 猪流行性腹泻病毒S1D蛋白的优化表达及其单克隆抗体的制备[J]. 中国畜牧兽医, 2021, 48 (12): 4641- 4651.
|
|
LI J S , SUN R H , KUANG Y Q , et al. Optimal expression of porcine epidemic diarrhea virus S1D protein and preparation of its monoclonal antibody[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48 (12): 4641- 4651.
|
31 |
张天爱, 李婷婷, 陶晓莉, 等. 猪流行性腹泻病毒S蛋白原核表达及多克隆抗体的制备与鉴定[J]. 中国畜牧兽医, 2022, 49 (11): 4383- 4391.
|
|
ZHANG T A , LI T T , TAO X L , et al. Prokaryotic expression of porcine epidemic diarrhea virus S protein and preparation and identification of its polyclonal antibody[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49 (11): 4383- 4391.
|
32 |
柏家果, 刘思雨, 杜琛, 等. 猪流行性腹泻病毒S蛋白的原核表达及其多克隆抗体的制备[J]. 中国兽医科学, 2022, 52 (11): 1415- 1421.
|
|
BAI J G , LIU S Y , DU C , et al. Prokaryotic expression and polyclonal antibody preparation of spike protein of porcine epidemic diarrhea virus[J]. Chinese Veterinary Science, 2022, 52 (11): 1415- 1421.
|
33 |
郭晓辉. 猪流行性腹泻病毒S重组蛋白的大肠杆菌表达及其免疫学评价的初步研究[D]. 沈阳: 沈阳农业大学, 2023.
|
|
GUO X H. Expression and immunological evaluation of porcine epidemic diarrhea virus S recombinant protein in Escherichia coli[D]. Shenyang: Shenyang Agricultural University, 2023. (in Chinese)
|