[1] 吴方超, 顾凤飞, 刘建新. 热应激对奶牛免疫功能、消化道稳态和乳腺健康的影响及机制 [J]. 动物营养学报,2024,36(9): 5479-5485. WU F C, GU F F, LIU J X. Effects and mechanisms of heat stress on immune function, gastrointestinal tract homeostasis, and mammary gland health in dairy cows [J]. Chinese Journal of Animal Nutrition, 2024, 36(9): 5479-5485.(in Chinese) [2] 金宜全, 黄晓飞, 宫 玥, 等. 热应激对奶牛的影响及应对措施 [J]. 中国奶牛,2024(8): 1-5. JIN Y Q, HUANG X F, GONG Y, et al. Physical cooling measures to reduce heat stress in dairy cows [J].China Dairy Cattle, 2024(8): 1-5.(in Chinese) [3] 白 慧. 热应激对奶奶牛乳腺上皮细胞功能的影响及牛磺酸的缓解作用 [D]. 南京:南京农业大学,2022. BAI H. Effects of heat stress on function of bovine mammary epithelial cells and the alleviative effects of taurine [D]. Nanjing: Nanjing Agricultural University, 2022.(in Chinese) [4] AYEMELE A G, TILAHUN M, LINGLING S, et al. Oxidative stress in dairy cows: insights into the mechanistic mode of actions and mitigating strategies [J]. Antioxidants, 2021,10(12):1918. [5] BAI H, LI T, YU Y, et al. Cytoprotective effects of taurine on heat-induced bovine mammary epithelial cells in vitro [J]. Cells, 2021, 10(2):258. [6] SADEGHI M, DEHNAVI S, ASADIRAD A, et al. Curcumin and chemokines: mechanism of action and therapeutic potential in inflammatory diseases [J]. Inflammopharmacology, 2023, 31(3): 1069-1093. [7] FARKHONDEH T, SAMARGHANDIAN S, POURBAGHER-SHAHRI A M, et al. The impact of curcumin and its modified formulations on Alzheimer's disease [J]. J Cell Physiol, 2019, 234(10): 16953-16965. [8] PATEL S S, ACHARYA A, RAY R S, et al. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease [J]. Crit Rev Food Sci Nutr, 2020, 60(6): 887-939. [9] BERNABUCCI U, RONCHI B, LACETERA N, et al. Influence of body condition score on relationships between metabolic status and oxidative stress in periparturient dairy cows [J]. J Dairy Sci, 2005, 88(6): 2017-2026. [10] ZENG J, CAI J, WANG D, et al. Heat stress affects dairy cow health status through blood oxygen availability [J]. J Anim Sci Biotechnol, 2023, 14(1): 112. [11] DAS R, SAILO L, VERMA N, et al. Impact of heat stress on health and performance of dairy animals: A review [J]. Vet World, 2016, 9(3): 260-268. [12] GUO Z, GAO S, OUYANG J, et al. Impacts of heat stress-induced oxidative stress on the milk protein biosynthesis of dairy cows [J]. Animals, 2021, 11(3):726. [13] LIU S, LIU Y, BAO E, et al. The protective role of heat shock proteins against stresses in animal breeding [J]. Int J Mol Sci, 2024, 25(15):8208. [14] BEERE H M, WOLF B B, CAIN K, et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome [J]. Nat Cell Biol, 2000, 2(8): 469-475. [15] LI L, TAN H, GU Z, et al. Heat stress induces apoptosis through a Ca2+-mediated mitochondrial apoptotic pathway in human umbilical vein endothelial cells [J]. PLoS One, 2014, 9(12): e111083. [16] LY J D, GRUBB D R, LAWEN A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update [J]. Apoptosis, 2003, 8(2): 115-128. [17] CHEN K L, WANG H L, JIANG L Z, et al. Heat stress induces apoptosis through disruption of dynamic mitochondrial networks in dairy cow mammary epithelial cells [J]. In Vitro Cell Dev Biol Anim, 2020, 56(4): 322-331. [18] XIAO J L, LIU H Y, SUN C C, et al. Regulation of Keap1-Nrf2 signaling in health and diseases [J]. Mol Biol Rep, 2024, 51(1): 809. [19] ALONSO-PIÑEIRO J A, GONZALEZ-ROVIRA A, SáNCHEZ-GOMAR I, et al. Nrf2 and Heme Oxygenase-1 involvement in atherosclerosis related oxidative stress [J]. Antioxidants (Basel), 2021, 10(9): 1463. [20] HE F, RU X, WEN T. NRF2, a transcription factor for stress response and beyond [J]. Int J Mol Sci, 2020, 21(13): 4777. [21] AMIN K N, RAJAGURU P, SUZUKI T, et al. Quantitative proteomic analyses uncover regulatory roles of Nrf2 in human endothelial cells [J]. Cell Stress Chaperones, 2023, 28(6): 731-747. [22] BARNA J, CSERMELY P, VELLAI T. Roles of heat shock factor 1 beyond the heat shock response [J]. Cell Mol Life Sci, 2018, 75(16): 2897-2916. [23] KASAI S, SHIMIZU S, TATARA Y, et al. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology [J]. Biomolecules, 2020, 10(2): 320. [24] BUTTARI B, ARESE M, OBERLEY-DEEGAN R E, et al. NRF2: A crucial regulator for mitochondrial metabolic shift and prostate cancer progression [J]. Front Physiol, 2022, 13: 989793. [25] CAI H, QIN D, PENG S. Responses and coping methods of different testicular cell types to heat stress: overview and perspectives [J]. Biosci Rep, 2021, 41(6): BSR20210443. [26] KOZIEL M J, KOWALSKA K, PIASTOWSKA-CIESIELSKA A W. Nrf2: a main responsive element in cells to mycotoxin-induced toxicity [J]. Arch Toxicol, 2021, 95(5): 1521-1533. [27] POUREMAMALI F, POUREMAMALI A, DADASHPOUR M, et al. An update of Nrf2 activators and inhibitors in cancer prevention/promotion [J]. Cell Commun Signal, 2022, 20(1): 100. [28] CHOI B H, KIM J M, KWAK M K. The multifaceted role of NRF2 in cancer progression and cancer stem cells maintenance [J]. Arch Pharm Res, 2021, 44(3): 263-280. [29] THIMMULAPPA R K, LEE H, RANGASAMY T, et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis [J]. J Clin Invest, 2006, 116(4): 984-995. [30] KHAN M Z, KHAN A, HUANG B, et al. Bioactive compounds protect mammalian reproductive cells from xenobiotics and heat stress-induced oxidative distress via Nrf2 signaling activation: a narrative review [J]. Antioxidants, 2024, 13(5): 597. [31] MOHAN G, KUMAR A, KHAN S H, et al. Casein (CSN) gene variants and parity affect the milk protein traits in crossbred (Bos taurus x Bos indicus) cows in sub-tropical climate [J]. Trop Anim Health Prod, 2021, 53(2): 289. [32] NILSEN H, OLSEN H G, HAYES B, et al. Casein haplotypes and their association with milk production traits in Norwegian Red cattle [J]. Genet Sel Evol, 2009, 41(1): 24. [33] KHAN M Z, KHAN A, XIAO J, et al. Role of the JAK-STAT pathway in bovine mastitis and milk production [J]. Animals, 2020, 10(11):2107. [34] MA X, LIU H, LI W, et al. Prolactin modulates the proliferation and secretion of goat mammary epithelial cells via regulating sodium-coupled neutral amino acid Transporter 1 and 2 [J]. Cells, 2024, 13(17): 1461. [35] MILUCHOVÁ M, GÁBOR M, CANDRÁK J. The effect of the genotypes of the CSN2 gene on test-day milk yields in the Slovak Holstein Cow [J]. Agriculture, 2023, 13(1): 154. |