

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (12): 5943-5951.doi: 10.11843/j.issn.0366-6964.2025.12.001
董天舒1,2(
), 柯文涛1,2, 梁豪1,2, 李劭明1,2, 李鹏1,2, 王家乡1,*(
), 吴艳2,*(
), 皮劲松2, 谢洋3, 栾艳3
收稿日期:2025-05-12
出版日期:2025-12-23
发布日期:2025-12-24
通讯作者:
王家乡,吴艳
E-mail:dongtianshu0930@163.com;wangjiaxiang1109@163.com;wuyanwh@163.com
作者简介:董天舒(2001-),男,山东淄博人,硕士生,主要从事家禽遗传育种与分子生物学研究,E-mail:dongtianshu0930@163.com
基金资助:
DONG Tianshu1,2(
), KE Wentao1,2, LIANG Hao1,2, LI Shaoming1,2, LI Peng1,2, WANG Jiaxiang1,*(
), WU Yan2,*(
), PI Jinsong2, XIE Yang3, LUAN Yan3
Received:2025-05-12
Online:2025-12-23
Published:2025-12-24
Contact:
WANG Jiaxiang, WU Yan
E-mail:dongtianshu0930@163.com;wangjiaxiang1109@163.com;wuyanwh@163.com
摘要:
单细胞转录组测序技术(scRNA-seq)因其单细胞分辨率解析细胞异质性与动态基因表达的优势,正逐步革新家禽生物学研究方式。本文系统综述了单细胞转录组测序技术在家禽领域的应用进展:单细胞测序技术通过逐个分析家禽细胞,为提升产蛋效率、改良肉质和增强抗病能力提供了新方法。然而,当前研究仍面临家禽单细胞图谱覆盖不足、功能验证体系匮乏及农业转化成本高昂等瓶颈。未来需聚焦低成本测序技术开发、多组学数据整合(如scATAC-seq与代谢组)及CRISPR/Cas9家禽模型的靶向验证,以驱动精准育种与繁殖调控的智能化设计。本文为深入解析家禽细胞命运决定机制及其应用提供了理论基础与技术展望。
中图分类号:
董天舒, 柯文涛, 梁豪, 李劭明, 李鹏, 王家乡, 吴艳, 皮劲松, 谢洋, 栾艳. 单细胞转录组测序技术在家禽中的研究进展与发展趋势[J]. 畜牧兽医学报, 2025, 56(12): 5943-5951.
DONG Tianshu, KE Wentao, LIANG Hao, LI Shaoming, LI Peng, WANG Jiaxiang, WU Yan, PI Jinsong, XIE Yang, LUAN Yan. Research Advances and Future Perspectives of Single-Cell RNA Sequencing Technology in Poultry[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(12): 5943-5951.
| 1 | JOHNSON A L , WOODS D C . Dynamics of avian ovarian follicle development: Cellular mechanisms of granulosa cell differentiation[J]. General Comp Endocrinol, 2009, 163 (1): 12- 17. |
| 2 | JOHNSON A . The avian ovary and follicle development: some comparative and practical insights[J]. Tur J Vet AnimSci, 2014, 38 (6): 660- 669. |
| 3 |
WAGNER DE , WEINREB C , COLLINS ZM , et al. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo[J]. Science, 2018, 360 (6392): 981- 987.
doi: 10.1126/science.aar4362 |
| 4 |
TANG F , BARBACIORU C , WANG Y , et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6 (5): 377- 382.
doi: 10.1038/nmeth.1315 |
| 5 |
FARRELL JA , WAANG Y , RIESSENFLED SJ , et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis[J]. Science, 2018, 360 (6392): eaar3131.
doi: 10.1126/science.aar3131 |
| 6 |
TASDEMIR-YILMAZ O E , DRUCKENBROD N R , OLUKOYA O O , et al. Diversity of developing peripheral glia revealed by single-cell RNA sequencing[J]. Dev Cell, 2021, 56 (17): 2516- 2535. e8.
doi: 10.1016/j.devcel.2021.08.005 |
| 7 |
JOVIC D , LIANG X , ZENG H , et al. Single-cell RNA sequencing technologies and applications: A brief overview[J]. Clin Transl Med, 2022, 12 (3): e694.
doi: 10.1002/ctm2.694 |
| 8 |
LIU Y , LIANG S , WANG B , et al. Advances in single-cell sequencing technology and its application in poultry science[J]. Genes, 2022, 13 (12): 2211.
doi: 10.3390/genes13122211 |
| 9 |
TANG F , BBARBACIORU C , NORDMAN E , et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell[J]. Nat Protoc, 2010, 5 (3): 516- 535.
doi: 10.1038/nprot.2009.236 |
| 10 |
CHOE K , PAK U , PANG Y , et al. Advances and challenges in spatial transcriptomics for developmental biology[J]. Biomolecules, 2023, 13 (1): 156.
doi: 10.3390/biom13010156 |
| 11 |
张肖旭, 李昊, 冯平捷, 等. 单细胞转录组测序技术在家养动物中的应用[J]. 畜牧兽医学报, 2024, 55 (8): 3276- 3287.
doi: 10.11843/j.issn.0366-6964.2024.08.002 |
|
ZHANG X X , LI H , FENG P J , et al. Application of single-cell transcriptome sequencing technology in domesticated animals[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (8): 3276- 3287.
doi: 10.11843/j.issn.0366-6964.2024.08.002 |
|
| 12 | YIN Y , LIU PY , SHI Y , et al. Single-cell sequencing and organoids: A powerful combination for modelling organ development and diseases[J]. Rev Physiol Biochem Pharmacol, 2021, 179, 189- 210. |
| 13 |
LAU F , BINACCHI R , BRUGNARA S , et al. Using single-cell RNA sequencing with Drosophila, Zebrafish, and mouse models for studying Alzheimer's and Parkinson's disease[J]. Neuroscience, 2025, 573, 505- 517.
doi: 10.1016/j.neuroscience.2025.03.042 |
| 14 | 张在宝, 赵紫微, 张佩欣, 等. 单细胞测序技术在植物中的应用研究进展[J]. 信阳师范学院学报(自然科学版), 2023, 36 (2): 330- 337. |
| ZHANG Z B , ZHAO Z W , ZHANG P X , et al. Research progress of single-cell sequencing technology in plants[J]. Journal of Xinyang Normal University, 2023, 36 (2): 330- 337. | |
| 15 |
KIND D , BASKARAN P , RAMIREZ F , et al. Automation enables high-throughput and reproducible single-cell transcriptomics library preparation[J]. SLAS Technol, 2022, 27 (2): 135- 142.
doi: 10.1016/j.slast.2021.10.018 |
| 16 |
ZIEGEENHAIN C , VIETH B , PAREKH S , et al. Comparative analysis of single-cell RNA sequencing methods[J]. Mol Cell, 2017, 65 (4): 631- 643. e4.
doi: 10.1016/j.molcel.2017.01.023 |
| 17 |
LA H , YOO H , LEE EJ , et al. Insights from the applications of single-cell transcriptomic analysis in germ cell development and reproductive medicine[J]. Int J Mol Sci, 2021, 22 (2): 823.
doi: 10.3390/ijms22020823 |
| 18 | 熊和丽, 沙茜, 刘韶娜, 等. 单细胞转录组测序技术在动物上的应用研究[J]. 生物技术通报, 2022, 38 (3): 226- 233. |
| XIONG H L , SHA Q , LIU S N , et al. Application of single-cell transcriptome sequencing in animals[J]. Biotechnology Bulletin, 2022, 38 (3): 226- 233. | |
| 19 |
ZIEGENHAIN C , VIETH B , PAREKH S , et al. Comparative analysis of single-cell RNA sequencing methods[J]. Mol Cell, 2017, 65 (4): 631- 643. e4.
doi: 10.1016/j.molcel.2017.01.023 |
| 20 |
CHOI H J , JUNG K M , PARK K J , et al. Single-cell transcriptome analysis of male chicken germ cells reveals changes in signaling pathway-related gene expression profiles during mitotic arrest[J]. FEBS Open Bio, 2023, 13 (5): 833- 844.
doi: 10.1002/2211-5463.13600 |
| 21 |
LU Y , LI M , GAO Z , et al. Innovative insights into single-cell technologies and multi-omics integration in livestock and poultry[J]. IJMS, 2024, 25 (23): 12940.
doi: 10.3390/ijms252312940 |
| 22 |
WANG Z , GERSTEIN M , SNYDER M . RNA-Seq: a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009, 10 (1): 57- 63.
doi: 10.1038/nrg2484 |
| 23 |
CHU Y , COREY DR . RNA sequencing: Platform selection, experimental design, and data interpretation[J]. Nucleic Acid Therapeutics, 2012, 22 (4): 271- 274.
doi: 10.1089/nat.2012.0367 |
| 24 | 崔凯, 吴伟伟, 刁其玉. 转录组测序技术的研究和应用进展[J]. 生物技术通报, 2019, 35 (7): 1- 9. |
| CUI K , WU W W , DIAO Q Y . Application and research progress on transcriptomics[J]. Biotechnology Bulletin, 2019, 35 (7): 1- 9. | |
| 25 |
WEST C , CAPITANCHIK C , CHESHIRE C , et al. nf-core/clipseq - a robust Nextflow pipeline for comprehensive CLIP data analysis[J]. Wellcome Open Res, 2023, 8, 286.
doi: 10.12688/wellcomeopenres.19453.1 |
| 26 |
MARTIN M . Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMB J, 2011, 17 (1): 10- 12.
doi: 10.14806/ej.17.1.200 |
| 27 |
LU J , SHENG Y , QIAN W , et al. scRNA-seq data analysis method to improve analysis performance[J]. IET Nanobiotechnology, 2023, 17 (3): 246- 256.
doi: 10.1049/nbt2.12115 |
| 28 |
JOVIC D , LIANG X , ZENG H , et al. Single-cell RNA sequencing technologies and applications: A brief overview[J]. Clin Transl Med, 2022, 12 (3): e694.
doi: 10.1002/ctm2.694 |
| 29 | 王杰. 基于单细胞转录组和单细胞蛋白质组测序技术研究牛早期雌雄胚胎发育差异[D]. 阿拉尔: 塔里木大学, 2024. |
| WANG J. Study on differences in embryonic development between males and females before implantation in cattle on the basis of single-cell transcriptome and single-cell proteome sequencing[D]. Alaer: Tarim University, 2024. (in Chinese) | |
| 30 |
ZHANG X , ZHANG F , XU X . Single-cell RNA sequencing in exploring the pathogenesis of diabetic retinopathy[J]. Clin Transl Med, 2024, 14 (7): e1751.
doi: 10.1002/ctm2.1751 |
| 31 |
MA P , AMEMIYA HM , HE LL , et al. Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states[J]. Cell, 2023, 186 (4): 877- 891. e14.
doi: 10.1016/j.cell.2023.01.002 |
| 32 |
LEI Y , TANG R , XU J , et al. Applications of single-cell sequencing in cancer research: progress and perspectives[J]. J Hematol Oncol, 2021, 14 (1): 91.
doi: 10.1186/s13045-021-01105-2 |
| 33 |
DAI M , ZHU S , AN Z , et al. Dissection of key factors correlating with H5N1 avian influenza virus driven inflammatory lung injury of chicken identified by single-cell analysis[J]. PLoS Pathog, 2023, 19 (10): e1011685.
doi: 10.1371/journal.ppat.1011685 |
| 34 |
KORVER DR . Review: Current challenges in poultry nutrition, health, and welfare[J]. Animal, 2023, 17, 100755.
doi: 10.1016/j.animal.2023.100755 |
| 35 |
MOTTET A , TEMPIO G . Global poultry production: current state and future outlook and challenges[J]. World's Poultry Science Journal, 2017, 73 (2): 245- 256.
doi: 10.1017/S0043933917000071 |
| 36 |
DEFALCO T , CAPEL B . Gonad morphogenesis in vertebrates: divergent means to a convergent end[J]. Annu Rev Cell Dev Biol, 2009, 25, 457- 482.
doi: 10.1146/annurev.cellbio.042308.13350 |
| 37 |
ESTERMANN MA , WILLIAMS S , HIRST CE , et al. Insights into gonadal sex differentiation provided by single-cell transcriptomics in the chicken embryo[J]. Cell Rep, 2020, 31 (1): 107491.
doi: 10.1016/j.celrep.2020.03.055 |
| 38 |
FEREGRINO C , SACHER F , PARNAS O , et al. A single-cell transcriptomic atlas of the developing chicken limb[J]. BMC Genomics, 2019, 20 (1): 401.
doi: 10.1186/s12864-019-5802-2 |
| 39 |
LI J , YANG D , CHEN C , et al. Single-cell RNA transcriptome uncovers distinct developmental trajectories in the embryonic skeletal muscle of Daheng broiler and Tibetan chicken[J]. BMC Genomics, 2025, 26 (1): 187.
doi: 10.1186/s12864-025-11363-w |
| 40 |
YEBOAH RL , PIRA CU , SHANKEL M , et al. Sox, Fox, and Lmx1b binding sites differentially regulate a Gdf5-Associated regulatory region during elbow development[J]. Front Cell Dev Biol, 2023, 11, 1215406.
doi: 10.3389/fcell.2023.1215406 |
| 41 |
LI J , XING S , ZHAO G , et al. Identification of diverse cell populations in skeletal muscles and biomarkers for intramuscular fat of chicken by single-cell RNA sequencing[J]. BMC Genomics, 2020, 21 (1): 752.
doi: 10.1186/s12864-020-07136-2 |
| 42 | 李京徽. 利用单细胞RNA测序技术鉴别鸡胸肌组织细胞亚群和特异性表达基因[D]. 北京: 中国农业科学院, 2020. |
| LI J H. Identification of cell diversity and specific expressed genes in chicken breast muscle using single-cell RNA sequencing[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese) | |
| 43 |
DU X , LAI S , ZHAO W , et al. Single-cell RNA sequencing revealed the liver heterogeneity between egg-laying duck and ceased-laying duck[J]. BMC Genomics, 2022, 23 (1): 857.
doi: 10.1186/s12864-022-09089-0 |
| 44 |
LI W , MA X , LI X , et al. Integrating single-cell RNA-Seq and ATAC-Seq analysis reveals uterine cell heterogeneity and regulatory networks linked to pimpled eggs in chickens[J]. Int J Mol Sci, 2024, 25 (24): 13431.
doi: 10.3390/ijms252413431 |
| 45 |
WANG L , XUE Z , TIAN Y , et al. A single-cell transcriptome atlas of Lueyang black-bone chicken skin[J]. Poult Sci, 2024, 103 (4): 103513.
doi: 10.1016/j.psj.2024.103513 |
| 46 |
VELEZ-IRIZARRY D , CHENG H , HEARN C . scRNA seq of an F1 cross of Marek's disease resistant and susceptible chickens identifies allele specific expression signatures enriched in transcription modulators[J]. Sci Rep, 2025, 15 (1): 3689.
doi: 10.1038/s41598-025-86174-w |
| 47 |
ZHANG Q , WANG Q , ZHENG J , et al. Single-cell RNA sequencing of the spleen reveals differences in Salmonella typhimurium infection mechanisms between different chicken breed[J]. Poult Sci, 2025, 104 (2): 104669.
doi: 10.1016/j.psj.2024.104669 |
| 48 |
TU J H , LIU B G , LIN B J , et al. Single-cell transcriptomic atlas of the chicken cecum reveals cellular responses and state shifts during Eimeria tenella infection[J]. BMC Genomics, 2025, 26, 141.
doi: 10.1186/s12864-025-11302-9 |
| 49 |
QU X , LI X , LI Z , et al. Chicken peripheral blood mononuclear cells response to avian leukosis virus subgroup J infection assessed by single-cell RNA sequencing[J]. Front Microbiol, 2022, 13, 800618.
doi: 10.3389/fmicb.2022.800618 |
| 50 |
SUN C , JIN K , ZUO Q , et al. Characterization of alternative splicing (AS) events during chicken (Gallus gallus) male germ-line stem cell differentiation with single-cell RNA-seq[J]. Animals, 2021, 11 (5): 1469.
doi: 10.3390/ani11051469 |
| 51 |
THIERY A P , BUZZI A L , HAMRUD E , et al. scRNA-sequencing in chick suggests a probabilistic model for cell fate allocation at the neural plate border[J]. Elife, 2023, 12, e82717.
doi: 10.7554/eLife.82717 |
| 52 | HEYL T VON, BRUNNER M, SCCHMAUSER A, et al. Unraveling new characteristics of γδ T cells using scRNA-seq in TCR KO chicken[A]. bioRxiv, 2025: 2025.02.26.640441. |
| 53 |
GONG X , ZHANG Y , AI J , et al. Application of single-cell RNA sequencing in ovarian development[J]. Biomolecules, 2022, 13 (1): 47.
doi: 10.3390/biom13010047 |
| 54 |
LI D , NING C , ZHANG J , et al. Dynamic transcriptome and chromatin architecture in granulosa cells during chicken folliculogenesis[J]. Nat Commun, 2022, 13 (1): 131.
doi: 10.1038/s41467-021-27800-9 |
| 55 |
ZHANG W , CHEN X , NIE R , et al. Single-cell transcriptomic analysis reveals regulative mechanisms of follicular selection and atresia in chicken granulosa cells[J]. Food Research International, 2024, 198, 115368.
doi: 10.1016/j.foodres.2024.115368 |
| 56 |
YU L , PENG R , LIANG J , et al. Spatiotemporal single-cell RNA sequencing reveals the role of steroid hormone pathway during chicken primordial follicle formation[J]. Poultry Science, 2024, 103 (10): 104090.
doi: 10.1016/j.psj.2024.104090 |
| 57 |
ZHOU S , MA Y , ZHAO D , et al. Transcriptome profiling analysis of underlying regulation of growing follicle development in the chicken[J]. Poultry Science, 2020, 99 (6): 2861- 2872.
doi: 10.1016/j.psj.2019.12.067 |
| [1] | 马媛, 金昊延, 王娜娜, 解雅茹, 李恬娇, 张令锴. 基于scRNA-seq解析猪圆形精子的动态转录差异[J]. 畜牧兽医学报, 2025, 56(11): 5545-5562. |
| [2] | 刘源壹, 李昕俞, 巴音那木拉, 翠芳, 芒来, 杜明. 单细胞转录组测序技术及其在动物繁殖中的应用进展[J]. 畜牧兽医学报, 2023, 54(2): 421-433. |
| [3] | 陈诚, 乔西波, 孙亿, 康丽, 姜运良. 琅琊鸡FSHR基因-868位点的多态性及对产蛋性能的遗传效应研究[J]. 畜牧兽医学报, 2023, 54(11): 4560-4568. |
| [4] | 丁纪强, 李庆贺, 张高猛, 李森, 郑麦青, 文杰, 赵桂苹. 比较机器学习等算法对肉鸡产蛋性状育种值估计的准确性[J]. 畜牧兽医学报, 2022, 53(5): 1364-1372. |
| [5] | 张易, 白皓, 毕瑜林, 路奥, 黄艳丽, 陈国宏, 常国斌. 拷贝数变异在家禽育种中的研究进展[J]. 畜牧兽医学报, 2020, 51(11): 2633-2640. |
| [6] | 李俊营,詹凯,刘伟,韩涛,李绍全,柏如东. 淮南麻黄鸡CRBP4基因多态性与早期产蛋性状和蛋品质的相关性[J]. 畜牧兽医学报, 2013, 44(2): 197-203. |
| [7] | 李春苗,黎寿丰,赵振华,黄华云,薛龙岗. BMP15外显子1 SNPs检测及其与邵伯鸡母系产蛋性状的关联性分析[J]. 畜牧兽医学报, 2012, 43(11): 1825-1832. |
| [8] | 徐海平;周敏;方梅霞;曾华;聂庆华;张德祥;张细权. DRD2基因14个多态位点与鸡产蛋性状的相关性[J]. 畜牧兽医学报, 2010, 41(8): 944-950. |
| [9] | 周敏;梁菲菲;饶友生;曾华;张德祥;张细权. VIPR-1基因12个多态位点与鸡早期产蛋性状的相关性[J]. 畜牧兽医学报, 2008, 39(9): 1147-1152. |
| [10] | 吴信生;徐琪;肖小珺;张学余;吴圣龙;包文斌;李碧春;陈国宏. 11个地方鸡品种性状间的典型相关分析[J]. 畜牧兽医学报, 2008, 39(5): 576-581. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||