畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (9): 3887-3896.doi: 10.11843/j.issn.0366-6964.2024.09.014
李相辰(), 王林楠, 于正青, 张莉, 杨晨晨, 宋亮丽*(
)
收稿日期:
2024-02-18
出版日期:
2024-09-23
发布日期:
2024-09-27
通讯作者:
宋亮丽
E-mail:lixiangchen199906@163.com;sll2019@nxu.edu.cn
作者简介:
李相辰(1999-),男,山东莱西人,硕士生,主要从事动物生殖生理及产科疾病的研究,E-mail: lixiangchen199906@163.com
基金资助:
Xiangchen LI(), Linnan WANG, Zhengqing YU, Li ZHANG, Chenchen YANG, Liangli SONG*(
)
Received:
2024-02-18
Online:
2024-09-23
Published:
2024-09-27
Contact:
Liangli SONG
E-mail:lixiangchen199906@163.com;sll2019@nxu.edu.cn
摘要:
旨在探究槲皮素(quercetin)修复脂磷壁酸(lipoteichoic acid, LTA)诱导的奶牛乳腺上皮细胞(mammary alveolar cells-large T antigen, MAC-T)紧密连接损伤的作用机制。本试验以MAC-T为研究对象,设置不同浓度的LTA组(0、0.1、1、10 μg·mL-1)、不同浓度的槲皮素组(0、5、10、20 μmol·L-1)、空白组,检测不同浓度LTA和槲皮素对MAC-T细胞活力的影响。设置对照组(不做任何处理)、低、中、高浓度LTA组(0.1、1、10 μg·mL-1),筛选LTA最佳作用浓度;设置对照组(不做任何处理)、高浓度LTA+低浓度槲皮素(5 μmol·L-1)、高浓度LTA+中浓度槲皮素组(10 μmol·L-1)、高浓度LTA+高浓度槲皮素组(20 μmol·L-1),筛选槲皮素最佳作用浓度。在自噬与紧密连接关系的研究中,将细胞分为对照组(不做任何处理)、高浓度LTA组、高浓度LTA+中浓度槲皮素组、高浓度LTA+自噬抑制剂氯喹(chloroquine,CQ)组(50 μmol·L-1)。每组均进行3次重复,槲皮素与氯喹均在LTA作用前加入,即使用槲皮素和氯喹分别孵育细胞3 h后,再加入10 μg·mL-1 LTA继续培养12 h,通过CCK-8法检测不同浓度LTA和槲皮素对MAC-T活力的影响,利用Western blot和免疫荧光检测细胞紧密连接蛋白(Occludin、ZO-1、Claudin-1)和自噬相关蛋白(Beclin-1、LC3、P62)的表达水平。结果显示,中、高浓度LTA对MAC-T活力有显著影响,但细胞活性维持在90%以上,不同浓度槲皮素对MAC-T活力均无显著影响。此外,LTA诱导后的MAC-T中紧密连接蛋白表达降低,自噬水平升高;槲皮素作用MAC-T后,细胞紧密连接蛋白表达升高,自噬水平降低;自噬抑制剂CQ作用后,自噬水平被抑制,紧密连接蛋白表达升高。LTA可导致MAC-T自噬过度激活,破坏紧密连接功能,而槲皮素可通过抑制自噬恢复紧密连接功能。该研究结果为奶牛乳腺炎的治疗提供了新的研究思路和理论依据。
中图分类号:
李相辰, 王林楠, 于正青, 张莉, 杨晨晨, 宋亮丽. 槲皮素抑制自噬恢复LTA诱导的奶牛乳腺上皮细胞紧密连接功能[J]. 畜牧兽医学报, 2024, 55(9): 3887-3896.
Xiangchen LI, Linnan WANG, Zhengqing YU, Li ZHANG, Chenchen YANG, Liangli SONG. Quercetin Inhibits Autophagy to Restore LTA-induced Tight Junction Function in Mammary Alveolar Cells-large T Antigen[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3887-3896.
1 |
ZIGO F , VASIL' M , ONDRAŠOVIČOVÁ S , et al. Maintaining optimal mammary gland health and prevention of mastitis[J]. Front Vet Sci, 2021, 8, 607311.
doi: 10.3389/fvets.2021.607311 |
2 | 孙雅君. 奶牛乳腺炎源金黄色葡萄球菌耐药性相关基因的检测与耐药菌株表型异质性分析[D]. 杨凌: 西北农林科技大学, 2021. |
SUN Y J. Resistance-related genes in Staphylococcus aureus from bovine mastitis and phenotypic heterogeneity in the resistant isolate[D]. Yangling: Northwest A & F University, 2021. (in Chinese) | |
3 | 郭上朝. 34味中药对牛源金黄色葡萄球菌耐药性和生物被膜的影响[D]. 秦皇岛: 河北科技师范学院, 2023. |
GUO S C. Effects of 34 traditional Chinese medicines on drug resistance and biofilm of Staphylococcus aureus of bovine origin[D]. Qinhuangdao: Hebei Normal University of Science & Technology, 2023. (in Chinese) | |
4 |
KLEIN R C , FABRES-KLEIN M H , BRITO M A V P , et al. Staphylococcus aureus of bovine origin: genetic diversity, prevalence and the expression of adhesin-encoding genes[J]. Vet Microbiol, 2012, 160 (1-2): 183- 188.
doi: 10.1016/j.vetmic.2012.05.025 |
5 |
RANA E A , FAZAL M A , ALIM M A . Frequently used therapeutic antimicrobials and their resistance patterns on Staphylococcus aureus and Escherichia coli in mastitis affected lactating cows[J]. Int J Vet Sci Med, 2022, 10 (1): 1- 10.
doi: 10.1080/23144599.2022.2038494 |
6 |
ZHU L L , LAI Y X , LI X W , et al. Molecular and epidemiological characterization of Staphylococcus aureus causing bovine mastitis in China[J]. Microb Pathog, 2024, 191, 106640.
doi: 10.1016/j.micpath.2024.106640 |
7 |
BURTCHETT T A , SHOOK J C , HESSE L E , et al. Crucial role for lipoteichoic acid assembly in the metabolic versatility and antibiotic resistance of Staphylococcus aureus[J]. Infect Immun, 2023, 91 (7): e0055022.
doi: 10.1128/iai.00550-22 |
8 |
RAINARD P , GILBERT F B , GERMON P . Immune defenses of the mammary gland epithelium of dairy ruminants[J]. Front Immunol, 2022, 13, 1031785.
doi: 10.3389/fimmu.2022.1031785 |
9 |
LIU M J , SONG S X , LI H R , et al. The protective effect of caffeic acid against inflammation injury of primary bovine mammary epithelial cells induced by lipopolysaccharide[J]. J Dairy Sci, 2014, 97 (5): 2856- 2865.
doi: 10.3168/jds.2013-7600 |
10 |
TSUGAMI Y , SUZUKI N , KAWAHARA M , et al. Establishment of an in vitro culture model to study milk production and the blood-milk barrier with bovine mammary epithelial cells[J]. Anim Sci J, 2020, 91 (1): e13355.
doi: 10.1111/asj.13355 |
11 |
VISSER J , ROZING J , SAPONE A , et al. Tight junctions, intestinal permeability, and autoimmunity: celiac disease and type 1 diabetes paradigms[J]. Ann N Y Acad Sci, 2009, 1165 (1): 195- 205.
doi: 10.1111/j.1749-6632.2009.04037.x |
12 |
WANG Y , LI X R , HAN Z Q , et al. iE-DAP induced inflammatory response and tight junction disruption in bovine mammary epithelial cells via NOD1-dependent NF-κB and MLCK signaling pathway[J]. Int J Mol Sci, 2023, 24 (7): 6263.
doi: 10.3390/ijms24076263 |
13 |
BÄSLER K , BRANDNER J M . Tight junctions in skin inflammation[J]. Pflugers Arch, 2017, 469 (1): 3- 14.
doi: 10.1007/s00424-016-1903-9 |
14 |
DE BENEDETTO A , RAFAELS N M , MCGIRT L Y , et al. Tight junction defects in patients with atopic dermatitis[J]. J Allergy Clin Immunol, 2011, 127 (3): 773- 786.e7.
doi: 10.1016/j.jaci.2010.10.018 |
15 | STELWAGEN K . Effect of milking frequency on mammary functioning and shape of the lactation curve[J]. J Dairy Sci, 2001, 84 Suppl, E204- E211. |
16 |
VAZIRI N D , YUAN J , RAHIMI A , et al. Disintegration of colonic epithelial tight junction in uremia: a likely cause of CKD-associated inflammation[J]. Nephrol Dial Transplant, 2012, 27 (7): 2686- 2693.
doi: 10.1093/ndt/gfr624 |
17 |
KOBAYASHI K , OYAMA S , NUMATA A , et al. Lipopolysaccharide disrupts the milk-blood barrier by modulating claudins in mammary alveolar tight junctions[J]. PLoS One, 2013, 8 (4): e62187.
doi: 10.1371/journal.pone.0062187 |
18 |
AL-SADI R , DHARMAPRAKASH V , NIGHOT P , et al. Bifidobacterium bifidum enhances the intestinal epithelial tight junction barrier and protects against intestinal inflammation by targeting the toll-like receptor-2 pathway in an NF-κB-independent manner[J]. Int J Mol Sci, 2021, 22 (15): 8070.
doi: 10.3390/ijms22158070 |
19 |
秦士贞, 杨敏敏, 任志雄, 等. 枯草芽孢杆菌对脂多糖应激肉仔鸡肠道免疫、肠道组织形态以及肠道屏障的影响[J]. 畜牧兽医学报, 2023, 54 (11): 4676- 4690.
doi: 10.11843/j.issn.0366-6964.2023.11.022 |
QIN S Z , YANG M M , REN Z X , et al. Effects of Bacillus subtilis on intestinal immunity, intestinal tissue morphology and intestinal barrier of broilers challenged with lipopolysaccharide[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (11): 4676- 4690.
doi: 10.11843/j.issn.0366-6964.2023.11.022 |
|
20 | LI Y J , ZHANG P , ZHANG J , et al. Role of autophagy inducers and inhibitors in intestinal barrier injury induced by intestinal ischemia-reperfusion (I/R)[J]. J Immunol Res, 2022, 2022, 9822157. |
21 |
ZHANG C , DENG Y A , ZHANG Y S , et al. CXCR3 Inhibition blocks the NF-κB signaling pathway by elevating autophagy to ameliorate lipopolysaccharide-induced intestinal dysfunction in mice[J]. Cells, 2023, 12 (1): 182.
doi: 10.3390/cells12010182 |
22 |
DENG S W , HU Q , CHEN X Q , et al. GM130 protects against blood-brain barrier disruption and brain injury after intracerebral hemorrhage by regulating autophagy formation[J]. Exp Gerontol, 2022, 163, 111772.
doi: 10.1016/j.exger.2022.111772 |
23 |
BATIHA G E S , BESHBISHY A M , IKRAM M , et al. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin[J]. Foods, 2020, 9 (3): 374.
doi: 10.3390/foods9030374 |
24 |
XU D , HU M J , WANG Y Q , et al. Antioxidant activities of quercetin and its complexes for medicinal application[J]. Molecules, 2019, 24 (6): 1123.
doi: 10.3390/molecules24061123 |
25 |
SUN W L , SHAHRAJABIAN M H . Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health[J]. Molecules, 2023, 28 (4): 1845.
doi: 10.3390/molecules28041845 |
26 |
KERANMU A , PAN L B , YU H , et al. The potential biological effects of quercetin based on pharmacokinetics and multi-targeted mechanism in vivo[J]. J Asian Nat Prod Res, 2022, 24 (5): 403- 431.
doi: 10.1080/10286020.2022.2045965 |
27 |
WICIŃSKI M , ERDMANN J , NOWACKA A , et al. Natural phytochemicals as SIRT activators-focus on potential biochemical mechanisms[J]. Nutrients, 2023, 15 (16): 3578.
doi: 10.3390/nu15163578 |
28 |
SULTANA R , MCBAIN A J , O'NEILL C A . Strain-dependent augmentation of tight-junction barrier function in human primary epidermal keratinocytes by Lactobacillus and Bifidobacterium lysates[J]. Appl Environ Microbiol, 2013, 79 (16): 4887- 4894.
doi: 10.1128/AEM.00982-13 |
29 |
BAZZONI G , DEJANA E . Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis[J]. Physiol Rev, 2004, 84 (3): 869- 901.
doi: 10.1152/physrev.00035.2003 |
30 |
SCHWAYER C , SHAMIPOUR S , PRANJIC-FERSCHA K , et al. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow[J]. Cell, 2019, 179 (4): 937- 952.e18.
doi: 10.1016/j.cell.2019.10.006 |
31 | IONESCU POPESCU C , LILIAC L , CEAUŞU R A , et al. CLDN3 expression and significance- breast carcinoma versus ovarian carcinoma[J]. Rom J Morphol Embryol, 2013, 54 (1): 99- 106. |
32 |
高志光, 秦环龙. 肠上皮细胞紧密连接的生物学功能及在肠屏障中的作用[J]. 肠外与肠内营养, 2005, 12 (5): 299- 302.
doi: 10.3969/j.issn.1007-810X.2005.05.014 |
GAO Z G , QIN H L . The biological functions of intestinal epithelial tight junctions and its role in intestinal barrier[J]. Parenteral & Enteral Nutrition, 2005, 12 (5): 299- 302.
doi: 10.3969/j.issn.1007-810X.2005.05.014 |
|
33 | 杨斐, 杨艳红, 张馨月, 等. 细胞连接分子对上皮组织物质转运的调控机制[J]. 生物技术, 2019, 29 (2): 199- 204. |
YANG F , YANG Y H , ZHANG X Y , et al. Regulatory mechanism of cell-linked molecules on epithelial material transport[J]. Biotechnology, 2019, 29 (2): 199- 204. | |
34 |
ITOH M , BISSELL M J . The organization of tight junctions in epithelia: implications for mammary gland biology and breast tumorigenesis[J]. J Mammary Gland Biol Neoplasia, 2003, 8 (4): 449- 462.
doi: 10.1023/B:JOMG.0000017431.45314.07 |
35 |
NGUYEN D A D , NEVILLE M C . Tight junction regulation in the mammary gland[J]. J Mammary Gland Biol Neoplasia, 1998, 3 (3): 233- 246.
doi: 10.1023/A:1018707309361 |
36 | 沈义媛, 童津津, 熊本海, 等. 多组学技术在奶牛瘤胃微生物与宿主互作机制中的研究进展[J]. 中国乳业, 2021, (8): 68- 75. |
SHEN Y Y , TONG J J , XIONG B H , et al. Progress of Multi-omics in interaction mechanism between rumen microorganism and host in dairy cows[J]. China Dairy, 2021, (8): 68- 75. | |
37 | 宋洁. 黄花蒿醇提物缓解LPS诱导奶牛乳腺上皮细胞炎症损伤的作用机制研究[D]. 呼和浩特: 内蒙古农业大学, 2023. |
SONG J. Mechanism of Artemisia annua ethanol extract alleviating LPS-induced inflammatory injury in bovine mammary epithelial cells[D]. Hohhot: Inner Mongolia Agricultural University, 2023. (in Chinese) | |
38 |
CUI Y J , LIU L , DOU X X , et al. Lactobacillus reuteri ZJ617 maintains intestinal integrity via regulating tight junction, autophagy and apoptosis in mice challenged with lipopolysaccharide[J]. Oncotarget, 2017, 8 (44): 77489- 77499.
doi: 10.18632/oncotarget.20536 |
39 |
LI M X , LUO T , HUANG Y , et al. Polysaccharide from Pycnoporus sanguineus ameliorates dextran sulfate sodium-induced colitis via helper T cells repertoire modulation and autophagy suppression[J]. Phytother Res, 2020, 34 (10): 2649- 2664.
doi: 10.1002/ptr.6695 |
40 |
曹璐, 王桃, 陈艳, 等. 槲皮素对LPS诱导小鼠乳腺上皮细胞炎症的保护机制[J]. 农业生物技术学报, 2023, 31 (6): 1218- 1228.
doi: 10.3969/j.issn.1674-7968.2023.06.010 |
CAO L , WANG T , CHEN Y , et al. Protective mechanism of quercetin against LPS-induced inflammation in mouse (Mus musculus) mammary epithelial cells[J]. Journal of Agricultural Biotechnology, 2023, 31 (6): 1218- 1228.
doi: 10.3969/j.issn.1674-7968.2023.06.010 |
|
41 |
ZHENG J Y , XU H , HUANG C L , et al. Quercetin protects against intestinal barrier disruption and inflammation in acute necrotizing pancreatitis through TLR4/MyD88/p38?MAPK and ERS inhibition[J]. Pancreatology, 2018, 18 (7): 742- 752.
doi: 10.1016/j.pan.2018.08.001 |
42 |
GENG N , LIU K P , LU J W , et al. Autophagy of bovine mammary epithelial cell induced by intracellular Staphylococcus aureus[J]. J Microbiol, 2020, 58 (4): 320- 329.
doi: 10.1007/s12275-020-9182-8 |
43 |
黄超, 黄庆华, 尤荻, 等. 槲皮素在创伤性脑损伤治疗中潜在分子机制和临床应用的可行性[J]. 中国组织工程研究, 2019, 23 (23): 3760- 3766.
doi: 10.3969/j.issn.2095-4344.1325 |
HUANG C , HUANG Q H , YOU D , et al. Molecular mechanism of quercetin in the treatment of traumatic brain injury: its feasibility of clinical application[J]. Chinese Journal of Tissue Engineering Research, 2019, 23 (23): 3760- 3766.
doi: 10.3969/j.issn.2095-4344.1325 |
[1] | 王怡, 高娟, 胡悦旻, 杨跃飞, 范博钧, 鞠辉明. 短期血清饥饿胁迫对猪骨骼肌卫星细胞代谢及自噬发生的影响[J]. 畜牧兽医学报, 2024, 55(8): 3408-3417. |
[2] | 曹馨予, 蔡佳炜, 鲍志远, 姚漱玉, 李云鹏, 陈阳, 吴信生, 赵博昊. ATG14调控家兔毛囊毛乳头细胞自噬进程的功能探究[J]. 畜牧兽医学报, 2024, 55(8): 3472-3481. |
[3] | 李媛媛, 王天玉, 李梦, 张文慧, 王英卉, 赵天瑞, 李浩洁, 赵阳飞, 王金明. 硒代蛋氨酸通过PINK1/Parkin介导的线粒体自噬缓解氟诱导的抑郁样行为[J]. 畜牧兽医学报, 2024, 55(7): 3213-3224. |
[4] | 李菲菲, 张晨淼, 童津津, 蒋林树. 线粒体自噬调节NLRP3炎症小体活性改善动物健康的作用机制[J]. 畜牧兽医学报, 2024, 55(4): 1446-1455. |
[5] | 李钰浚, 何翃闳, 杨丽雪, 杨小耿, 李键, 张慧珠. 线粒体自噬调控哺乳动物胚胎发育的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 905-912. |
[6] | 康方圆, 刘镇滔, 吴奎显, 倪晗, 钟凯, 李和平, 杨国宇, 韩立强. 脂噬对奶牛乳腺上皮细胞脂滴大小的调控研究[J]. 畜牧兽医学报, 2024, 55(3): 1095-1101. |
[7] | 秦祎, 胡文洁, 方小伟, 郭骞, 田篮鑫, 刘芳, 方春. 脂磷壁酸合成酶ltaS基因缺失对产单核细胞李氏杆菌致病性的影响[J]. 畜牧兽医学报, 2024, 55(2): 670-679. |
[8] | 邱文粤, 苏依曼, 叶嘉莉, 章心婷, 庞晓玥, 王荣梅, 谢子茂, 张辉, 唐兆新, 苏荣胜. 积雪草酸通过调控细胞凋亡和自噬缓解脂多糖诱导肉鸡急性肾损伤的研究[J]. 畜牧兽医学报, 2024, 55(2): 809-821. |
[9] | 庄翠翠, 韩博. 大肠杆菌感染奶牛乳腺上皮细胞和小鼠乳腺组织致其线粒体损伤的机制研究[J]. 畜牧兽医学报, 2024, 55(2): 822-833. |
[10] | 刘悦阳, 李梦媛, 聂雪伊, 马亚博, 侯雨欣, 马伯利, 杨易, 徐金瑞. 钙结合蛋白S100A4对BCG感染THP-1细胞自噬的调控作用[J]. 畜牧兽医学报, 2024, 55(1): 311-322. |
[11] | 杜海东, 娜仁花. 反刍动物胃肠道上皮屏障功能及与微生物互作研究[J]. 畜牧兽医学报, 2023, 54(5): 1804-1814. |
[12] | 王崇年, 于嘉霖, 宫照乾, 吴晓玲, 邓光存. 脂肪分化相关蛋白2对BCG诱导小鼠传代巨噬细胞自噬的调控作用[J]. 畜牧兽医学报, 2023, 54(5): 2134-2146. |
[13] | 王涵, 蒙利洁, 刘文娇, 徐永健, 龚婷. 香猪睾丸间质细胞TAS1R3基因干扰后对自噬相关因子的影响[J]. 畜牧兽医学报, 2023, 54(4): 1525-1534. |
[14] | 蔡明玉, 张海龙, 海珍珍, 乔亚蕊, 杜军, 周学章. 重组克柔念珠菌14-3-3蛋白诱导奶牛乳腺上皮细胞炎症反应的分子机制[J]. 畜牧兽医学报, 2023, 54(4): 1679-1689. |
[15] | 张成成, 孙嘉豪, 王秀玲, 张小荣, 吴艳涛. 猪瘟病毒非结构蛋白NS5A与Beclin1相互作用并促进病毒增殖[J]. 畜牧兽医学报, 2023, 54(2): 715-725. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||