畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (9): 3757-3768.doi: 10.11843/j.issn.0366-6964.2024.09.002
贾宏霞1,2(), 刘在霞1,2, 周乐1,2, 鲍艳春1,2, 霍晨曦1,2, 左鹏鹏1,2, 谷明娟1,2, 娜日苏1,2, 张文广1,2,3,*(
)
收稿日期:
2024-02-29
出版日期:
2024-09-23
发布日期:
2024-09-27
通讯作者:
张文广
E-mail:jiahongxia0427@163.com;atcgnmbi@aliyun.com
作者简介:
贾宏霞(1999-),女,内蒙古包头人,硕士生,主要从事肉牛育种研究,E-mail: jiahongxia0427@163.com
基金资助:
Hongxia JIA1,2(), Zaixia LIU1,2, Le ZHOU1,2, Yanchun BAO1,2, Chenxi HUO1,2, Pengpeng ZUO1,2, Mingjuan GU1,2, Risu NA1,2, Wenguang ZHANG1,2,3,*(
)
Received:
2024-02-29
Online:
2024-09-23
Published:
2024-09-27
Contact:
Wenguang ZHANG
E-mail:jiahongxia0427@163.com;atcgnmbi@aliyun.com
摘要:
基因组选择的发展,在肉牛育种中留下了深刻的印记。中国肉牛品种多、群体规模小导致遗传育种工作的进度迟缓。多数研究表明参考群体大的纯种肉牛群体在多品种评估中的好处甚微,而对参考群体小的品种可以从多品种评估中受益,并且不会对纯种性能的评估产生不良影响。在肉牛遗传育种研究中,基因组信息的使用为改善肉牛的遗传改良提供了机会,以确定杂交品种等多品种参考群体带给肉牛遗传育种的利用价值。多品种基因组评估作为提高群体遗传增益的有利工具,能够通过使用多品种模型对肉牛群体进行基因组评估。本综述从肉牛基因组选择角度进行阐述,重点综述基因组选择在多品种肉牛中的使用情况,探讨了对肉牛使用基因组选择的影响机制,以期为多品种肉牛基因组选择的研究提供新思路,探索基因组选择的应用潜力。
中图分类号:
贾宏霞, 刘在霞, 周乐, 鲍艳春, 霍晨曦, 左鹏鹏, 谷明娟, 娜日苏, 张文广. 基因组选择在肉牛中的研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3757-3768.
Hongxia JIA, Zaixia LIU, Le ZHOU, Yanchun BAO, Chenxi HUO, Pengpeng ZUO, Mingjuan GU, Risu NA, Wenguang ZHANG. Research Progress of Genomic Selection in Beef Cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3757-3768.
表 1
基因组选择在肉牛中的应用"
分类 Category | 作者 Author | 方法 Method | 应用 Application | 文献 Reference |
直接法 Direct algorithm | Lourenco等 | ssGBLUP、BLUP | 在安格斯牛的初生重、断奶重、断奶后增重、产犊难易四个性状中,ssGBLUP预测较BLUP预测有所提高 | [ |
Mehrban等 | ssGBLUP、BLUP | 评估单性状和多性状韩牛胴体性状和生长性状中,ssGBLUP模型的准确性(0.52)皆高于基于谱系的BLUP(0.34) | [ | |
Londoñ-Gil等 | ssGBLUP、BLUP | 在谱系缺失下内洛尔牛生长和奶牛生产力相关性状的预测准确性中,在已知谱系比例较低的情况下,ssGBLUP较BLUP的基因组估计育种价值准确性更高 | [ | |
Onogi等 | ssGBLUP、BLUP | 对日本黑牛7种脂肪酸和大理石花纹、胴体质量、眼肌面积性状的预测准确性中,ssGBLUP较BLUP实际预测准确性更高 | [ | |
Brzáková等 | ssGBLUP、BLUP | 在预测夏洛莱牛首次产犊年龄、产犊间隔和生产寿命性状时,有基因分的型动物使用ssGBLUP方法可以将GEBV的准确性平均提高19% | [ | |
Naserkheil等 | ssGBLUP、PBLUP | 在肉牛10种原始切割性状的预测准确性中,ssGBLUP(0.52~0.83)在10个性状上的表现都优于PBLUP(0.45~0.75) | [ | |
Valerio-Hernández等 | ssGBLUP、GBLUP、PBLUP | 在预测布劳恩牛的出生重、断奶重和一岁体重形状中,种群规模小的情况下ssGBLUP的表现不如PBLUP和GBLUP | [ | |
Bonifazi等 | ssSNPBLUP、PBLUP | 在比较肉牛断奶重性状的预测准确性中,ssSNPBLUP较PBLUP直接计算的EBV准确性平均提高了13.7%,母畜EBV的平均准确性提高了25.8% | [ | |
Alvarenga等 | ssGBLUP、WssGBLUP | 在预测不同训练种群情景的杂交肉牛GEBV的性能,基于单一性状的ssGBLUP适用于具有相似遗传结构的杂交种群的基因组评估 | [ | |
Ribeiro等 | ssGBLUP、WssGBLUP | 在预测肉牛的剩余采食量性状时,使用WssGBLUP(0.29)比ssGBLUP(0.10)的预测更准确 | [ | |
Mancin等 | ssGBLUP、WssGBLUP、PBLUP | 在估计伦德纳牛的平均日增重、平均肉质评分和平均屠宰率性状中,ssGBLUP较PBLUP计算的准确性平均提高30%, WssGBLUP可以观察到主要的偏差和离散 | [ | |
Comin等 | ssGBLUP、WssGBLUP、PBLUP | 在海福特牛传染性角膜结膜炎发病率性状的预测准确中,使用WssGBLUP较ssGBLUP方法进一步提高预测准确性 | [ | |
Naserkheil等 | WssGBLUP | 在韩牛一岁重和胴体性状的预测准确性中,使用WssGBLUP提高QTL检测统计 | [ | |
间接法 Indirect algorithm | Ma等 | BayesR、GBLUP | 在评估中国三种肉牛之间不同标记密度和遗传相关性的预测准确性中, BayesR将品种内预测准确性从7.1%提高到14.3% | [ |
Zhu等 | BayesA、BayesB、BayesCπ、BayesR、GBLUP | 在中国西门塔尔牛的生长、胴体和肉质等20个性状的预测准确性中,BayesR的平均预测准确性较GBLUP增加了1.7% | [ | |
Zhu等 | BayesA、BayesB、BayesCπ、BayesFA、BayesFB、BayesFCπ | 对1 136头西门塔尔肉牛的胴体重量、活重和里脊肉重量三个性状的交叉验证分析表明,BayesFCπ的预测准确性较BayesCπ好 | [ | |
Somavilla等 | BayesA、BayesCπ、BGBLUP | 对718头内洛尔肉牛平均日增重性状预测时BayesCπ模型导致的预测偏差较小,准确度范围为0.18至0.27 | [ | |
Mehrban等 | BayesC、Bayes LASSO、GBLUP | 对1 183头韩牛的胴体性状的直接基因组育种值准确性评估中,BayesC比BayesLASSO和GBLUP的准确性高7% | [ | |
Li等 | BayesB、BayesBH、BayesBH+ Bayes B、GBLUP、GHBLUP | 在评估基于单倍型等位基因的基因组预测中,BayesBH+BayesB较BayesB模型的平均计算时间可以减少29.3% | [ | |
机器学习 Machine learning algorithm | Liang等 | TPE、KRR、SVR、GBLUP | 对于中国西门塔尔肉牛和罗布洛利松种群的生长性状,KRR-TPE的预测 | [ |
准确性分别比GBLUP平均提高了8.73%和6.08% | ||||
Alves等 | SVR、BRANN、RF、GBLUP | 将SVR与GBLUP和BLASSO进行比较,阴囊周长增加了8.3%,早期 | [ | |
、Bayes LASSO | 妊娠增加了4.5%,持久性增加了4.8% | |||
Li等 | GRM、XGBoost、RF | 来自RF和GBM的SNP亚群的性能明显优于基因组中均匀分布的亚群(0.18~0.29) | [ | |
Brito等 | ANN、BayesRR、Bayes Lasso、BayesA、BayesB、BayesCπ、 | ANN在内洛尔牛肉嫩度的基因组预测中达到了最高准确率(0.33) | [ | |
Nishio等 | SVR、GK、RF、XGBoost、GBLUP、WGBLUP | XGBoost、SVR和GK在首次产犊年龄、产犊难易和妊娠期性状的预测准确性较BLUP分别提高了28.4%、19.0%和36.4% | [ | |
Liang等 | SVR、KRR、RF、Adaboost.RT、GBLUP | 4种机器学习方法相对于GBLUP的平均改进率分别为12.8%、14.9%、5.4%和14.4% | [ | |
Srivastava等 | RF、XGBoost、SVM、GBLUP | XGBoost对胴体重量和大理石花纹性状的预测相关性较好 | [ | |
Santana等 | SVM、Adaboost、NB、DT、DNN、NN、MLP | SVM在内洛尔牛生殖性状基因组预测中具有更好的预测能力和计算时间效率 | [ | |
Liang等 | SVR、KRR、EN、SELF、GBLUP、BayesB | SELF在中国西门塔尔牛、德国荷斯坦牛、火炬松的9个性状中的平均预测准确性较GBLUP提高了7.70% | [ | |
An等 | SVR、BayesB、GBLUP、KCRR | KCRR在模拟GS群体、中国西门塔尔牛、德国荷斯坦牛、火炬松、猪4个品种的三个性状上预测准确性更好 | [ | |
Mota等 | SVR、MLNN、STGBLUP、BayesA、BayesB、BayesC、BRR、Bayes LASSO | 在1 156头内洛尔牛中测量饲料效率性状的预测准确性,使用MLNN、SVR和MTGBLUP的准确性提高了8.9%、14.6%和13.7% | [ |
1 | 李俊雅, 陈燕. 肉牛种业的昨天、今天和明天[EB/OL]. (2021-03-17)[2024-02-05]. http://www.zzj.moa.gov.cn/mhsh/202103/t20210317_6363897.htm. |
LI J Y, CHEN Y. Beef cattle industry yesterday, today and tomorrow[EB/OL]. Department of the seed management, Ministry of Agriculture and Rural Affairs of the People's Republic of China, 2021. (in Chinese) | |
2 | 王贵荣. 王贵荣: 2023年农业经济形势总体良好[EB/OL]. (2024-01-18)[2024-02-05]. https://www.stats.gov.cn/sj/sjjd/202401/t20240118_1946695.html. |
WANG G R. Wang Guirong: The overall agricultural economic situation in 2023 is good[EB/OL]. https://www.stats.gov.cn/sj/sjjd/202401/t20240118_1946695.html. National Bureau of Statistics. 2024. (in Chinese) | |
3 |
BEHREN L E , KÖNIG S , MAY K . Genomic selection for dairy cattle behaviour considering novel traits in a changing technical production environment[J]. Genes (Basel), 2023, 14 (10): 1933.
doi: 10.3390/genes14101933 |
4 | 孙东晓, 张胜利, 张勤, 等. 我国奶牛基因组选择技术应用进展[J]. 畜牧兽医学报, 2023, 54 (10): 4028- 4039. |
SUN D X , ZHANG S L , ZHANG Q , et al. Application progress on genomic selection technology for dairy cattle in China[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (10): 4028- 4039. | |
5 | 李诚兰, 郭婷婷, 岳耀敬. 基因组选择及其在羊育种中的应用研究进展[J]. 中国畜牧兽医, 2023, 50 (2): 616- 625. |
LI C L , GUO T T , YUE Y J . Research advances on genomic selection and its application in sheep breeding[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50 (2): 616- 625. | |
6 |
YAN X C , ZHANG T , LIU L C , et al. Accuracy of genomic selection for important economic traits of cashmere and meat goats assessed by simulation study[J]. Front Vet Sci, 2022, 9, 770539.
doi: 10.3389/fvets.2022.770539 |
7 |
MEUWISSEN T H E , HAYES B J , GODDARD M E . Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157 (4): 1819- 1829.
doi: 10.1093/genetics/157.4.1819 |
8 |
DE LOS CAMPOS G , VAZQUEZ A I , FERNANDO R , et al. Prediction of complex human traits using the genomic best linear unbiased predictor[J]. PLoS Genetics, 2013, 9 (7): e1003608.
doi: 10.1371/journal.pgen.1003608 |
9 | VERONEZE R. Linkage disequilibrium and genomic selection in pigs[D]. Wageningen: Wageningen University, 2015. |
10 |
ZHOU L , DING X D , ZHANG Q , et al. Consistency of linkage disequilibrium between Chinese and Nordic Holsteins and genomic prediction for Chinese Holsteins using a joint reference population[J]. Genet Sel Evol, 2013, 45 (1): 7.
doi: 10.1186/1297-9686-45-7 |
11 |
OLSON K M , VANRADEN P M , TOOKER M E . Multibreed genomic evaluations using purebred Holsteins, Jerseys, and Brown Swiss[J]. J Dairy Sci, 2012, 95 (9): 5378- 5383.
doi: 10.3168/jds.2011-5006 |
12 |
KIZILKAYA K , FERNANDO R L , GARRICK D J . Genomic prediction of simulated multibreed and purebred performance using observed fifty thousand single nucleotide polymorphism genotypes[J]. J Anim Sci, 2010, 88 (2): 544- 551.
doi: 10.2527/jas.2009-2064 |
13 | XU L , NIU Q H , CHEN Y , et al. Validation of the prediction accuracy for 13 traits in Chinese Simmental beef cattle using a preselected low-density SNP panel[J]. Animals (Basel), 2021, 11 (7): 1890. |
14 |
HASSANI S , SAATCHI M , FERNANDO RL , et al. Accuracy of prediction of simulated polygenic phenotypes and their underlying quantitative trait loci genotypes using real or imputed whole-genome markers in cattle[J]. Genet Sel Evol, 2015, 47, 99.
doi: 10.1186/s12711-015-0179-4 |
15 |
STEYN Y , LOURENCO D A L , MISZTAL I . Genomic predictions in purebreds with a multibreed genomic relationship matrix1[J]. J Anim Sci, 2019, 97 (11): 4418- 4427.
doi: 10.1093/jas/skz296 |
16 |
SNELLING W M , CUSHMAN R A , FORTES M R S , et al. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: How single nucleotide polymorphism chips will advance our knowledge of factors controlling puberty and aid in selecting replacement beef females[J]. J Anim Sci, 2012, 90 (4): 1152- 1165.
doi: 10.2527/jas.2011-4581 |
17 |
FORTES M R S , SUHAIMI A H , PORTO-NETO L , et al. Post-partum anoestrus in tropical beef cattle: A systems approach combining gene expression and genome-wide association results[J]. Livest Sci, 2014, 166, 158- 166.
doi: 10.1016/j.livsci.2014.06.017 |
18 |
WARBURTON C L , COSTILLA R , ENGLE B N , et al. Breed-adjusted genomic relationship matrices as a method to account for population stratification in multibreed populations of tropically adapted beef heifers[J]. Anim Prod Sci, 2021, 61 (18): 1788- 1795.
doi: 10.1071/AN21057 |
19 |
FACY M L , HEBART M L , OAKEY H , et al. Evaluation of dominance in tropically adapted composite beef cattle[J]. Anim Prod Sci, 2021, 61 (18): 1811- 1817.
doi: 10.1071/AN21094 |
20 |
REVERTER A , PORTO-NETO L R , FORTES M R S , et al. Genomic analyses of tropical beef cattle fertility based on genotyping pools of Brahman cows with unknown pedigree[J]. J Anim Sci, 2016, 94 (10): 4096- 4108.
doi: 10.2527/jas.2016-0675 |
21 |
NEIRA J D R , PERIPOLLI E , DE NEGREIROS M P M , et al. Prediction ability for growth and maternal traits using SNP arrays based on different marker densities in Nellore cattle using the ssGBLUP[J]. J Appl Genet, 2022, 63 (2): 389- 400.
doi: 10.1007/s13353-022-00685-0 |
22 |
COMIN H B , CAMPOS G S , DOMINGUES R , et al. Genetic parameters and accuracy of traditional and genomic breeding values for resistance to infectious bovine keratoconjunctivitis in Hereford[J]. Livest Sci, 2022, 264, 105078.
doi: 10.1016/j.livsci.2022.105078 |
23 |
LOURENCO D A L , TSURUTA S , FRAGOMENI B O , et al. Genetic evaluation using single-step genomic best linear unbiased predictor in American angus[J]. J Anim Sci, 2015, 93 (6): 2653- 2662.
doi: 10.2527/jas.2014-8836 |
24 |
MEHRBAN H , NASERKHEIL M , LEE D , et al. Multi-trait single-step GBLUP improves accuracy of genomic prediction for carcass traits using yearling weight and ultrasound traits in Hanwoo[J]. Front Genet, 2021, 12, 692356.
doi: 10.3389/fgene.2021.692356 |
25 |
LONDOÑO-GIL M , CARDONA-CIFUENTES D , ESPIGOLAN R , et al. Genomic evaluation of commercial herds with different pedigree structures using the single-step genomic BLUP in Nelore cattle[J]. Trop Anim Health Prod, 2023, 55 (2): 95.
doi: 10.1007/s11250-023-03508-4 |
26 |
ONOGI A , OGINO A , KOMATSU T , et al. Whole-genome prediction of fatty acid composition in meat of Japanese black cattle[J]. Anim Genet, 2015, 46 (5): 557- 559.
doi: 10.1111/age.12300 |
27 |
BRZÁKOVÁ M , VESELÁ Z , VAŘEKA J , et al. Improving breeding value reliability with genomic data in breeding groups of charolais[J]. Genes (Basel), 2023, 14 (12): 2139.
doi: 10.3390/genes14122139 |
28 |
NASERKHEIL M , MEHRBAN H , LEE D , et al. Evaluation of genome-enabled prediction for carcass primal cut yields using single-step genomic best linear unbiased prediction in Hanwoo cattle[J]. Genes (Basel), 2021, 12 (12): 1886.
doi: 10.3390/genes12121886 |
29 |
VALERIO-HERNÁNDEZ J E , RUÍZ-FLORES A , NILFOROOSHAN M A , et al. Single-step genomic evaluation for growth traits in a Mexican Braunvieh cattle population[J]. Anim Biosci, 2023, 36 (7): 1003- 1009.
doi: 10.5713/ab.22.0158 |
30 |
BONIFAZI R , CALUS M P L , TEN NAPEL J , et al. International single-step SNPBLUP beef cattle evaluations for Limousin weaning weight[J]. Genet Sel Evol, 2022, 54 (1): 57.
doi: 10.1186/s12711-022-00748-0 |
31 |
ALVARENGA A B , VERONEZE R , OLIVEIRA H R , et al. Comparing alternative single-step GBLUP approaches and training population designs for genomic evaluation of crossbred animals[J]. Front Genet, 2020, 11, 263.
doi: 10.3389/fgene.2020.00263 |
32 |
RIBEIRO G , BALDI F , CESAR A S M , et al. Detection of potential functional variants based on systems-biology: the case of feed efficiency in beef cattle[J]. BMC Genomics, 2022, 23 (1): 774.
doi: 10.1186/s12864-022-08958-y |
33 | MANCIN E , TULIOZI B , SARTORI C , et al. Genomic prediction in local breeds: The Rendena cattle as a case study[J]. Animals (Basel), 2021, 11 (6): 1815. |
34 | NASERKHEIL M , BAHRAMI A , LEE D , et al. Integrating single-step GWAS and bipartite networks reconstruction provides novel insights into yearling weight and carcass traits in Hanwoo beef cattle[J]. Animals (Basel), 2020, 10 (10): 1836. |
35 |
MA H R , LI H W , GE F , et al. Improving genomic predictions in multi-breed cattle populations: a comparative analysis of BayesR and GBLUP models[J]. Genes (Basel), 2024, 15 (2): 253.
doi: 10.3390/genes15020253 |
36 |
ZHU B , GUO P , WANG Z , et al. Accuracies of genomic prediction for twenty economically important traits in Chinese Simmental beef cattle[J]. Anim Genet, 2019, 50 (6): 634- 643.
doi: 10.1111/age.12853 |
37 |
ZHU B , ZHU M , JIANG J C , et al. The impact of variable degrees of freedom and scale parameters in Bayesian methods for genomic prediction in Chinese Simmental beef cattle[J]. PLoS One, 2016, 11 (5): e0154118.
doi: 10.1371/journal.pone.0154118 |
38 |
SOMAVILLA A L , REGITANO L C A , ROSA G J M , et al. Genome-enabled prediction of breeding values for feedlot average daily weight gain in Nelore cattle[J]. G3 (Bethesda), 2017, 7 (6): 1855- 1859.
doi: 10.1534/g3.117.041442 |
39 |
MEHRBAN H , LEE D H , MORADI M H , et al. Predictive performance of genomic selection methods for carcass traits in Hanwoo beef cattle: impacts of the genetic architecture[J]. Genet Sel Evol, 2017, 49 (1): 1.
doi: 10.1186/s12711-016-0283-0 |
40 |
LI H W , WANG Z Z , XU L , et al. Genomic prediction of carcass traits using different haplotype block partitioning methods in beef cattle[J]. Evol Appl, 2022, 15 (12): 2028- 2042.
doi: 10.1111/eva.13491 |
41 | LIANG M , AN B X , LI K A N , et al. Improving genomic prediction with machine learning incorporating TPE for hyperparameters optimization[J]. Biology (Basel), 2022, 11 (11): 1647. |
42 |
ALVES A A C , ESPIGOLAN R , BRESOLIN T , et al. Genome-enabled prediction of reproductive traits in Nellore cattle using parametric models and machine learning methods[J]. Anim Genet, 2021, 52 (1): 32- 46.
doi: 10.1111/age.13021 |
43 |
LI B , ZHANG N X , WANG Y G , et al. Genomic prediction of breeding values using a subset of SNPs identified by three machine learning methods[J]. Front Genet, 2018, 9, 237.
doi: 10.3389/fgene.2018.00237 |
44 |
BRITO LOPES F , MAGNABOSCO C U , PASSAFARO T L , et al. Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks[J]. J Anim Breed Genet, 2020, 137 (5): 438- 448.
doi: 10.1111/jbg.12468 |
45 |
NISHIO M , ARAKAWA A , INOUE K , et al. Evaluating the performance of genomic prediction accounting for effects of single nucleotide polymorphism markers in reproductive traits of Japanese Black cattle[J]. Anim Sci J, 2023, 94 (1): e13850.
doi: 10.1111/asj.13850 |
46 |
LIANG M , MIAO J , WANG X Q , et al. Application of ensemble learning to genomic selection in Chinese Simmental beef cattle[J]. J Anim Breed Genet, 2021, 138 (3): 291- 299.
doi: 10.1111/jbg.12514 |
47 | SRIVASTAVA S , LOPEZ B I , KUMAR H , et al. Prediction of Hanwoo cattle phenotypes from genotypes using machine learning methods[J]. Animals (Basel), 2021, 11 (7): 2066. |
48 |
SANTANA T E Z , SILVA J C F , DA SILVA L O C , et al. Genome-enabled classification of stayability in Nellore cattle under a machine learning framework[J]. Livest Sci, 2022, 260, 104935.
doi: 10.1016/j.livsci.2022.104935 |
49 |
LIANG M , CHANG T P , AN B X , et al. A stacking ensemble learning framework for genomic prediction[J]. Front Genet, 2021, 12, 600040.
doi: 10.3389/fgene.2021.600040 |
50 |
AN B X , LIANG M , CHANG T P , et al. KCRR: a nonlinear machine learning with a modified genomic similarity matrix improved the genomic prediction efficiency[J]. Brief Bioinform, 2021, 22 (6): bbab132.
doi: 10.1093/bib/bbab132 |
51 |
MOTA L F M , ARIKAWA L M , SANTOS S W B , et al. Benchmarking machine learning and parametric methods for genomic prediction of feed efficiency-related traits in Nellore cattle[J]. Sci Rep, 2024, 14 (1): 6404.
doi: 10.1038/s41598-024-57234-4 |
52 | 章峰. 肉牛剩余采食量及其组成性状的全基因组关联分析和基因组选择研究[D]. 南昌: 江西农业大学, 2017. |
ZHANG F. Genome-wide association studies and genomic prediction for residual feed intake and their component traits in beef cattle[D]. Nanchang: Jiangxi Agricultural University, 2017. (in Chinese) | |
53 |
MUIR W M . Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters[J]. J Anim Breed Genet, 2007, 124 (6): 342- 355.
doi: 10.1111/j.1439-0388.2007.00700.x |
54 | 马浩然, 张路培, 金生云, 等. 利用高密度SNP芯片评估中国地方肉牛品种基因组亲缘关系[J]. 畜牧兽医学报, 2023, 54 (10): 4174- 4185. |
MA H R , ZHANG L P , JIN S Y , et al. Assessment of the genomic relationships for Chinese indigenous beef cattle using high-density SNP chip[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (10): 4174- 4185. | |
55 | XU L , WANG Z Z , ZHU B , et al. Theoretical evaluation of multi-breed genomic prediction in Chinese indigenous cattle[J]. Animals (Basel), 2019, 9 (10): 789. |
56 |
DE ROOS A P W , HAYES B J , GODDARD M E . Reliability of genomic predictions across multiple populations[J]. Genetics, 2009, 183 (4): 1545- 1553.
doi: 10.1534/genetics.109.104935 |
57 |
SAATCHI M , MCCLURE M C , MCKAY S D , et al. Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation[J]. Genet Sel Evol, 2011, 43 (1): 40.
doi: 10.1186/1297-9686-43-40 |
58 |
HANNA L L H , GARRICK D J , GILL C A , et al. Comparison of breeding value prediction for two traits in a Nellore-Angus crossbred population using different Bayesian modeling methodologies[J]. Genet Mol Biol, 2014, 37 (4): 631- 637.
doi: 10.1590/S1415-47572014005000021 |
59 |
ROLF M M , GARRICK D J , FOUNTAIN T , et al. Comparison of Bayesian models to estimate direct genomic values in multi-breed commercial beef cattle[J]. Genet Sel Evol, 2015, 47 (1): 23.
doi: 10.1186/s12711-015-0106-8 |
60 |
TOOSI A , FERNANDO R L , DEKKERS J C M . Genomic selection in admixed and crossbred populations[J]. J Anim Sci, 2010, 88 (1): 32- 46.
doi: 10.2527/jas.2009-1975 |
61 | KACHMAN S D , SPANGLER M L , BENNETT G L , et al. Comparison of molecular breeding values based on within- and across-breed training in beef cattle[J]. Genet Sel Evol, 2013, 45 (1): 30. |
62 | HAYES B J , COPLEY J , DODD E , et al. Multi-breed genomic evaluation for tropical beef cattle when no pedigree information is available[J]. Genet Sel Evol, 2023, 55 (1): 71. |
63 | MOHAMMADDIYEH M E T K , RAFAT S A , SHODJA J , et al. Selective genotyping to implement genomic selection in beef cattle breeding[J]. Front Genet, 2023, 14, 1083106. |
64 | JÓNÁS D , DUCROCQ V , FRITZ S , et al. Genomic evaluation of regional dairy cattle breeds in single-breed and multibreed contexts[J]. J Anim Breed Genet, 2017, 134 (1): 3- 13. |
65 | BOLORMAA S , PRYCE J E , KEMPER K , et al. Accuracy of prediction of genomic breeding values for residual feed intake and carcass and meat quality traits in Bos taurus, Bos indicus, and composite beef cattle[J]. J Anim Sci, 2013, 91 (7): 3088- 3104. |
66 | CHEN C M . CiteSpace Ⅱ: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. JAm Soc Inf Sci, 2006, 57 (3): 359- 377. |
[1] | 王潇, 张昊, 栾庆江, 李慧, 杨鼎, 王婷月, 田菁, 赵濛, 陈陆, 田如刚. 冷热应激对肉牛生理指标及基因表达影响的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 894-904. |
[2] | 易鹏飞, 孙磊, 马亚楠, 马雪连, 李娜, 孙亚伟, 钟旗, 姚刚. 健康安格斯犊牛与IBRV感染犊牛鼻腔菌群变化比较[J]. 畜牧兽医学报, 2024, 55(3): 1147-1158. |
[3] | 姜玲玲, 牛小霞, 刘强, 张刚, 王璞, 李勇. 宁夏地区肉牛腹泻相关病毒感染状况的分析[J]. 畜牧兽医学报, 2023, 54(9): 3863-3871. |
[4] | 马浩然, 张路培, 金生云, 宝金山, 李红艳, 高会江, 徐凌洋, 王泽昭, 李俊雅. 利用高密度SNP芯片评估中国地方肉牛品种基因组亲缘关系[J]. 畜牧兽医学报, 2023, 54(10): 4174-4185. |
[5] | 李宏伟, 徐凌洋, 王泽昭, 蔡文涛, 朱波, 陈燕, 高雪, 张路培, 高会江, 李俊雅. 基于单倍型肉牛屠宰性状全基因组关联分析研究[J]. 畜牧兽医学报, 2022, 53(12): 4232-4243. |
[6] | 李紫仟, 陈卓, 任强林, 马义诚, 叶倩文, 夏瑞阳, 王金泉, 赵红琼, 马忠祥, 李红波, 姚刚. 安格斯妊娠母牛异食行为的营养代谢异常及其与肠道菌群相关性研究[J]. 畜牧兽医学报, 2022, 53(1): 188-199. |
[7] | 朱波, 李宏伟, 周姵诺, 李倩, 高翰, 王泽昭, 汪聪勇, 蔡文涛, 徐凌洋, 陈燕, 张路培, 高雪, 高会江, 李俊雅. 国内外肉牛遗传评估体系概况[J]. 畜牧兽医学报, 2021, 52(6): 1447-1460. |
[8] | 刘明, 张磊, 安小鹏, 张恩平, 宋宇轩. 不同氨气浓度对肉牛生产性能、免疫和抗氧化能力的影响[J]. 畜牧兽医学报, 2020, 51(11): 2757-2764. |
[9] | 张新雨, 刘博, 罗军荣, 徐洋, 尚含乐, 杨食堂, 宋小珍. 中药复方制剂对热应激肉牛生产性能及生理生化指标的影响[J]. 畜牧兽医学报, 2018, 49(3): 620-628. |
[10] | 毛宏祥, 高凤仙, 王敏, 蒋载阳, 张秀敏, 龙栋磊, 王荣, 谭支良. 肉牛胃肠道甲烷排放模型估算精度的评估分析[J]. 畜牧兽医学报, 2017, 48(4): 690-698. |
[11] | 杨亮,潘晓花,熊本海,杨振刚. 牛肉生产从养殖到销售环节可追溯系统开发与应用[J]. 畜牧兽医学报, 2015, 46(8): 1383-1389. |
[12] | 姜成钢,闫贵龙,屠焰,张乃锋,刁其玉. 体外培养法研究三聚氰胺的降解规律及其对瘤胃发酵参数的影响[J]. 畜牧兽医学报, 2014, 45(4): 578-586. |
[13] | 赵红波,刘晓牧,刘倚帆,成海建,王星凌,刘桂芬,谭秀文,宋恩亮,万发春. 日粮棉酚含量对育肥牛血液指标及组织中棉酚残留的影响[J]. 畜牧兽医学报, 2014, 45(11): 1809-1814. |
[14] | 曹玉凤;;李秋凤;;高艳霞;;于海川;李建国;;冯志华;陈福音;崔秋佳;赵会利;王美美. 日粮阴阳离子平衡(DCAB)对热应激肉牛生产性能的影响[J]. 畜牧兽医学报, 2012, 43(8): 1239-1246. |
[15] | 解祥学;孟庆翔;任丽萍;张心壮;刘萍;. 不同品种牛背最长肌抗氧化性能的研究[J]. 畜牧兽医学报, 2012, 43(4): 534-552. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||