畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (8): 3395-3407.doi: 10.11843/j.issn.0366-6964.2024.08.013
夏振涛1(), 王楠1, 王婉洁1, 周期律1, 黄雷2, 牟玉莲1,*(
)
收稿日期:
2024-01-23
出版日期:
2024-08-23
发布日期:
2024-08-28
通讯作者:
牟玉莲
E-mail:17093646235@163.com;mouyulian@caas.cn
作者简介:
夏振涛(1999-),男,河南鹿邑人,硕士生,主要从事动物遗传育种与繁殖的研究,E-mail:17093646235@163.com
基金资助:
Zhentao XIA1(), Nan WANG1, Wanjie WANG1, Qilü ZHOU1, Lei HUANG2, Yulian MU1,*(
)
Received:
2024-01-23
Online:
2024-08-23
Published:
2024-08-28
Contact:
Yulian MU
E-mail:17093646235@163.com;mouyulian@caas.cn
摘要:
旨在探究猪氨基肽酶N(porcine aminopeptidase N,pAPN)基因敲除的猪空肠上皮细胞系(intestinal porcine epithelial cell line J2,IPEC-J2)介导猪传染性胃肠炎病毒(transmissible gastroenteritis virus,TGEV)感染的特征,为深入了解pAPN基因在TGEV感染过程中的作用机制提供理论依据。研究分为pAPN基因敲除IPEC-J2组(IPEC-J2-KO组)、野生型IPEC-J2组(IPEC-J2-WT组)和未接种TGEV的野生型IPEC-J2组(Mock组)3组,每组设置3个重复。首先通过实时荧光定量PCR(quantitative real-time PCR,qPCR)确定IPEC-J2接种TGEV毒株后收取细胞样品的最佳时间节点;其次,对IPEC-J2-KO进行了脱靶效应检测;然后,通过qPCR、蛋白免疫印迹(western blot,WB)、间接免疫荧光分析(indirect immunofluorescence assay,IFA)和50%组织细胞感染量(50% tissue culture infective dose,TCID50)对接种TGEV的IPEC-J2-KO、IPEC-J2-WT及Mock进行感染特征分析;最后,通过WB检测IPEC-J2-KO、IPEC-J2-WT和Mock中NF-κB p65及其磷酸化蛋白pp65的表达情况。qPCR结果显示,接毒24 h是收集细胞样本以评估TGEV对IPEC-J2影响的最佳时间节点;脱靶分析结果显示,在IPEC-J2-KO中未检测到脱靶效应;病毒感染特征分析结果显示,与IPEC-J2-WT相比,IPEC-J2-KO内病毒拷贝数、病毒滴度均极显著降低(P<0.001),与Mock相比,IPEC-J2-KO内病毒拷贝数、病毒滴度均无显著差异(P>0.05),且IPEC-J2-KO内未检测到TGEV-N蛋白的表达;此外,与Mock相比,接种TGEV后,IPEC-J2-WT组NF-κB p65的磷酸化水平极显著上调(P<0.001),而IPEC-J2-KO组无显著差异(P>0.05)。本研究表明, IPEC-J2-KO可有效抵抗TGEV的感染,接种TGEV未影响IPEC-J2-KO中先天免疫相关信号通路中转录因子NF-κB的活性。该研究为IPEC-J2作为TGEV感染特征研究的细胞模型提供了理论依据,为阐明pAPN基因在TGEV入侵宿主细胞的机制及抗病猪新品种的研究奠定了基础。
中图分类号:
夏振涛, 王楠, 王婉洁, 周期律, 黄雷, 牟玉莲. pAPN基因敲除的IPEC-J2介导的TGEV感染特征分析[J]. 畜牧兽医学报, 2024, 55(8): 3395-3407.
Zhentao XIA, Nan WANG, Wanjie WANG, Qilü ZHOU, Lei HUANG, Yulian MU. Characteristics Analysis of TGEV Infection Mediated by IPEC-J2 with Knockout of pAPN Gene[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3395-3407.
表 1
g3和g5的潜在脱靶位点序列"
潜在脱靶位点 Potential off-target sites | 序列(5′→3′) Sequence |
g3 On-target | TACCTCACTCCCAACGCGGATGG |
g5 On-target | GGGGGAACTTGCCGACGACCTGG |
g3-OT1 | aggCTCACTCCCAACGCtGATGG |
g3-OT2 | TcCCgCAtTCCCAtCGCGGATGG |
g3-OT3 | TAtCTCcCTtCCAACGCGGgAGG |
g3-OT4 | cACCTCcCcCCCAAaGCGGACGG |
g3-OT5 | TACCaCtCTCCCAACaCtGAAGG |
g3-OT6 | TtCCTCACgCCCAACGCctAGGG |
g3-OT7 | TACCTggCTCCCAACGaGGtGGG |
g3-OT8 | TACCTCAggagCAACGCGGATGG |
g5-OT1 | GtGaGAAaTTGCCGAaGACCAGG |
g5-OT2 | aGGcGgACTTGCCGAaGACCAGG |
g5-OT3 | GGGGcAtCcaGCCGACGACCCGG |
g5-OT4 | GcGGGAACagGCCGgCGACCTGG |
g5-OT5 | GGGtGAACgTGCCaAaGACCTGG |
g5-OT6 | GcaGGAACTTGCtGACGgCCAGG |
g5-OT7 | tGGGGAACTTGCCGgCGAaaAGG |
g5-OT8 | GGGGGcACTTGCtGACagCCTGG |
表 2
脱靶检测引物"
引物 Primer | 引物序列(5′→3′) Primers sequence | |
g3-OT1 | F: AGAGTTTTGAAGGCCTGGTG | R: TGAAGCTGATGGCACCTTTT |
g3-OT2 | F: CGCAGGGACAGCTTTTAAGA | R: AGACAAATGGACCCTGGAGA |
g3-OT3 | F: CCAAGGAATCTCAGACTGGC | R: TCAGAATTTGGCAGCCCTTT |
g3-OT4 | F: ACATTGAGCTTGTCTGGACC | R: GTCCTGAGCTGGTACGAAAG |
g3-OT5 | F: GTCACAGGGTTACCTCCTCT | R: GACAAAGATGGAGTGGAGGC |
g3-OT6 | F: AGGTCAAGATGCTGGACTCT | R: AGTCCATGAAAGGGAGTCCA |
g3-OT7 | F: CGTTTTACACCCATGGTCCA | R: CTTCCAGTGAGAGCAACTGG |
g3-OT8 | F: GAACAGCAGAGTCAGAGCTC | R: CCCAAAAGCTCTCTCTCGAC |
g5-OT1 | F: AAGACTTCATGCCTCAGCTG | R: GGTTTGGGGAGAAGTCACTG |
g5-OT2 | F: CGAAGGAGAAGAACCAGTGG | R: CCTTCATCAAGACCATCCGG |
g5-OT3 | F: GTGAGAGGATGGCGAACC | R: GATGCTGAGGGTTGAGTGAG |
g5-OT4 | F: GCAATGTTCTCGGCCAAAC | R: ACCAGAAGCTTCTCTCTCCA |
g5-OT5 | F: GTTGTCAGACTCCAACCTGG | R: GCACAGGGTGGTCACATTAA |
g5-OT6 | F: TGTGCTACTACAACGTGCTG | R: CACGCTGAACACGTGGTAG |
g5-OT7 | F: GCTTTCCTCACCGGATGAAT | R: AGTATCCTTGTCTGGCCAGT |
g5-OT8 | F: GCCTATCCCTTCCTTCTTGC | R: TCACAGTGAATTGGACTGCC |
1 |
LIU Q , WANG H Y . Porcine enteric coronaviruses: an updated overview of the pathogenesis, prevalence, and diagnosis[J]. Vet Res Commun, 2021, 45 (2-3): 75- 86.
doi: 10.1007/s11259-021-09808-0 |
2 | DOYLE L P , HUTCHINGS L M . A transmissible gastroenteritis in pigs[J]. J Am Vet Med Assoc, 1946, 108, 257- 259. |
3 |
CHEN S Y , ZHANG H Y , CHU M F , et al. Prevalence of transmissible gastroenteritis among swine populations in China during 1983-2022: A systematic review and meta-analysis[J]. Microb Pathog, 2023, 183, 106320.
doi: 10.1016/j.micpath.2023.106320 |
4 |
TURLEWICZ-PODBIELSKA H , POMORSKA-MÓL M . Porcine Coronaviruses: Overview of the State of the Art[J]. Virol Sin, 2021, 36 (5): 833- 851.
doi: 10.1007/s12250-021-00364-0 |
5 | 曹贝贝, 兰培英, 韩丽, 等. 猪TGEV HN-2012株ORF3a和ORF3b基因遗传变异分析及其真核表达研究[J]. 西北农林科技大学学报(自然科学版), 2016, 44 (4): 10- 16. |
CAO B B , LAN P Y , HAN L , et al. Genetic variation and eukaryotic expression of ORF3a and ORF3b from porcine TGEV HN-2012 strain[J]. Journal of Northwest A&F University (Natural Science Edition), 2016, 44 (4): 10- 16. | |
6 | 郑宾宾, 宋涛, 季裕婷, 等. 猪传染性胃肠炎病毒HB-1株的分离鉴定和全基因组序列分析[J]. 中国兽医杂志, 2023, 59 (5): 36- 41. |
ZHENG B B , SONG T , JI Y T , et al. Isolation, identification and whole genome sequence analysis of porcine transmissible gastroenteritis virus HB-1 strain[J]. Chinese Journal of Veterinary Medicine, 2023, 59 (5): 36- 41. | |
7 | 李嘉琛, 吴华伟, 陈晓春, 等. 猪传染性胃肠炎病毒的分离与鉴定[J]. 中国兽药杂志, 2018, 52 (3): 25- 30. |
LI J C , WU H W , CHEN X C , et al. Isolation and identification of porcine transmissible gastroenteritis virus[J]. Chinese Journal of Veterinary Drug, 2018, 52 (3): 25- 30. | |
8 |
俞伏松, 王劭, 陈仕龙, 等. 猪传染性胃肠炎病毒福建株的分离鉴定[J]. 福建农业学报, 2012, 27 (11): 1160- 1164.
doi: 10.3969/j.issn.1008-0384.2012.11.003 |
YU F S , WANG S , CHEN S L , et al. Isolation and identification of porcine transmissible gastroenteritis virus FJ strain[J]. Fujian Journal of Agricultural Sciences, 2012, 27 (11): 1160- 1164.
doi: 10.3969/j.issn.1008-0384.2012.11.003 |
|
9 |
祖立闯, 王芳, 刘爱华, 等. 我国猪传染性胃肠炎的流行现状及实验室诊断技术研究进展[J]. 养猪, 2017, (5): 123- 128.
doi: 10.3969/j.issn.1002-1957.2017.05.041 |
ZU L C , WANG F , LIU A H , et al. Research progress of epidemic status and laboratory diagnostic technology of porcine transmissible gastroenteritis in China[J]. Swine Production, 2017, (5): 123- 128.
doi: 10.3969/j.issn.1002-1957.2017.05.041 |
|
10 | YIN L , LIU X , HU D M , et al. Swine enteric coronaviruses (PEDV, TGEV, and PDCoV) induce divergent interferon-stimulated gene responses and antigen presentation in porcine intestinal enteroids[J]. Front Immunol, 2021, 12, 826882. |
11 |
VLASOVA A N , DIAZ A , DAMTIE D , et al. Novel canine coronavirus isolated from a hospitalized patient with pneumonia in east malaysia[J]. Clin Infect Dis, 2022, 74 (3): 446- 454.
doi: 10.1093/cid/ciab456 |
12 |
CHEN Y W , ZHANG Y Z , WANG X , et al. Transmissible gastroenteritis virus: An update review and perspective[J]. Viruses, 2023, 15 (2): 359.
doi: 10.3390/v15020359 |
13 |
ALONSO S , IZETA A , SOLA I , et al. Transcription regulatory sequences and mRNA expression levels in the coronavirus transmissible gastroenteritis virus[J]. J Virol, 2002, 76 (3): 1293- 1308.
doi: 10.1128/JVI.76.3.1293-1308.2002 |
14 |
GALÁN C , SOLA I , NOGALES A , et al. Host cell proteins interacting with the 3' end of TGEV coronavirus genome influence virus replication[J]. Virology, 2009, 391 (2): 304- 314.
doi: 10.1016/j.virol.2009.06.006 |
15 |
REN X F , LIU B Q , YIN J C , et al. Phage displayed peptides recognizing porcine aminopeptidase N inhibit transmissible gastroenteritis coronavirus infection in vitro[J]. Virology, 2011, 410 (2): 299- 306.
doi: 10.1016/j.virol.2010.11.014 |
16 |
RIEMANN D , KEHLEN A , LANGNER J . CD13-not just a marker in leukemia typing[J]. Immunol Today, 1999, 20 (2): 83- 88.
doi: 10.1016/S0167-5699(98)01398-X |
17 |
DELMAS B , GELFI J , KUT E , et al. Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site[J]. J Virol, 1994, 68 (8): 5216- 5224.
doi: 10.1128/jvi.68.8.5216-5224.1994 |
18 |
YEAGER C L , ASHMUN R A , WILLIAMS R K , et al. Human aminopeptidase N is a receptor for human coronavirus 229E[J]. Nature, 1992, 357 (6377): 420- 422.
doi: 10.1038/357420a0 |
19 |
SODERBERG C , GIUGNI T D , ZAIA J A , et al. CD13 (human aminopeptidase N) mediates human cytomegalovirus infection[J]. J Virol, 1993, 67 (11): 6576- 6585.
doi: 10.1128/jvi.67.11.6576-6585.1993 |
20 |
DELMAS B , GELFI J , L'HARIDON R , et al. Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV[J]. Nature, 1992, 357 (6377): 417- 420.
doi: 10.1038/357417a0 |
21 |
LI W T , LUO R , HE Q G , et al. Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry[J]. Virus Res, 2017, 235, 6- 13.
doi: 10.1016/j.virusres.2017.03.018 |
22 | WANG B , LIU Y , JI C M , et al. Porcine deltacoronavirus engages the transmissible gastroenteritis virus functional receptor porcine aminopeptidase N for infectious cellular entry[J]. J Virol, 2018, 92 (12): e00318- 18. |
23 | ZHU X Y , LIU S D , WANG X L , et al. Contribution of porcine aminopeptidase N to porcine deltacoronavirus infection[J]. Emerg Microbes Infect, 2018, 7 (1): 65. |
24 |
XU K , ZHOU Y R , MU Y L , et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J]. Elife, 2020, 9, e57132.
doi: 10.7554/eLife.57132 |
25 |
DEDIEGO M L , NIETO-TORRES J L , JIMENEZ-GUARDENO J M , et al. Coronavirus virulence genes with main focus on SARS-CoV envelope gene[J]. Virus Res, 2014, 194, 124- 137.
doi: 10.1016/j.virusres.2014.07.024 |
26 |
GUO J X , ZHAO X M , LIU Z H , et al. Transmissible gastroenteritis virus ORF3b up-regulates miR-885-3p to counteract TNF-alpha production via inhibiting NF-kappaB pathway[J]. Vet Microbiol, 2021, 261, 109189.
doi: 10.1016/j.vetmic.2021.109189 |
27 |
WANG L , QIAO X Y , ZHANG S J , et al. Porcine transmissible gastroenteritis virus nonstructural protein 2 contributes to inflammation via NF-kappaB activation[J]. Virulence, 2018, 9 (1): 1685- 1698.
doi: 10.1080/21505594.2018.1536632 |
28 |
ZHOU Y R , WU W , XIE L L , et al. Cellular RNA helicase DDX1 is involved in transmissible gastroenteritis virus nsp14-induced interferon-beta production[J]. Front Immunol, 2017, 8, 940.
doi: 10.3389/fimmu.2017.00940 |
29 |
WU Y , LI M W , TIAN J , et al. Broad antagonism of coronaviruses nsp5 to evade the host antiviral responses by cleaving POLDIP3[J]. PLoS Pathog, 2023, 19 (10): e1011702.
doi: 10.1371/journal.ppat.1011702 |
30 |
DU J , CHEN D W , YU B , et al. L-Leucine promotes STAT1 and ISGs expression in TGEV-infected IPEC-J2 cells via mTOR activation[J]. Front Immunol, 2021, 12, 656573.
doi: 10.3389/fimmu.2021.656573 |
31 |
GUO Z Z , ZHANG C X , DONG J J , et al. Persistence infection of TGEV promotes enterococcus faecalis infection on IPEC-J2 cells[J]. Int J Mol Sci, 2022, 24 (1): 450.
doi: 10.3390/ijms24010450 |
32 | 王晓朋, 徐奎, 魏迎辉, 等. CRISPR/Cas9介导的猪IPEC-J2细胞CD13基因敲除细胞系的建立[J]. 畜牧兽医学报, 2019, 50 (7): 1319- 1327. |
WANG X P , XU K , WEI Y H , et al. Establishment of CD13 gene knockout IPEC-J2 cell lines mediated by CRISPR/Cas9 system[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (7): 1319- 1327. | |
33 |
GUO R L , FAN B C , CHANG X J , et al. Characterization and evaluation of the pathogenicity of a natural recombinant transmissible gastroenteritis virus in China[J]. Virology, 2020, 545, 24- 32.
doi: 10.1016/j.virol.2020.03.001 |
34 |
XIA L , YANG Y H , WANG J L , et al. Impact of TGEV infection on the pig small intestine[J]. Virol J, 2018, 15 (1): 102.
doi: 10.1186/s12985-018-1012-9 |
35 |
GUO J Y , LI F , QIAN S J , et al. TGEV infection up-regulates FcRn expression via activation of NF-kappaB signaling[J]. Sci Rep, 2016, 6, 32154.
doi: 10.1038/srep32154 |
36 |
ZHAO X M , MA X L , GUO J X , et al. Circular RNA CircEZH2 suppresses transmissible gastroenteritis coronavirus-induced opening of mitochondrial permeability transition pore via targeting MiR-22 in IPEC-J2[J]. Int J Biol Sci, 2019, 15 (10): 2051- 2064.
doi: 10.7150/ijbs.36532 |
37 | PFLEIDERER G , CELLIERS P G . Isolation of an aminopetidase from kidney particles[J]. Biochem Z, 1963, 339, 186- 189. |
38 |
KUMARAVEL S , LUO G R , HUANG S T , et al. Development of a novel latent electrochemical molecular substrate for the real-time monitoring of the tumor marker aminopeptidase N in live cells, whole blood and urine[J]. Biosens Bioelectron, 2022, 203, 114049.
doi: 10.1016/j.bios.2022.114049 |
39 |
CHEN L , LIN Y L , PENG G Q , et al. Structural basis for multifunctional roles of mammalian aminopeptidase N[J]. Proc Natl Acad Sci U S A, 2012, 109 (44): 17966- 17971.
doi: 10.1073/pnas.1210123109 |
40 |
WHITWORTH K M , ROWLAND R R , EWEN C L , et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nat Biotechnol, 2016, 34 (1): 20- 22.
doi: 10.1038/nbt.3434 |
41 |
SHI X , TANG T , LIN Q Y , et al. Efficient generation of bone morphogenetic protein 15-edited Yorkshire pigs using CRISPR/Cas9?[J]. Biol Reprod, 2020, 103 (5): 1054- 1068.
doi: 10.1093/biolre/ioaa138 |
42 | 许美娜, 朱奕舟, 林思远, 等. CRISPR/Cas9基因编辑技术在猪育种中的研究进展[J]. 广东农业科学, 2022, 49 (8): 87- 96. |
XU M N , ZHU Y Z , LIN S Y , et al. Progress of the application of CRISPR/Cas9 gene editing technology in pig breeding[J]. Guangdong Agricultural Sciences, 2022, 49 (8): 87- 96. | |
43 |
XIANG G H , REN J L , HAI T , et al. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs[J]. Cell Mol Life Sci, 2018, 75 (24): 4619- 4628.
doi: 10.1007/s00018-018-2917-6 |
44 | ZHENG Q T , LIN J , HUANG J J , et al. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity[J]. Proc Natl Acad Sci U S A, 2017, 114 (45): E9474- E9482. |
45 |
XU K , ZHOU Y R , SHANG H T , et al. Pig macrophages with site-specific edited CD163 decrease the susceptibility to infection with porcine reproductive and respiratory syndrome virus[J]. J. Integr. Agric, 2023, 22 (7): 2188- 2199.
doi: 10.1016/j.jia.2022.11.010 |
46 |
NIU D , WEI H J , LIN L , et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9[J]. Science, 2017, 357 (6357): 1303- 1307.
doi: 10.1126/science.aan4187 |
47 |
MOTOCHE-MONAR C , ORDONEZ J E , CHANG O , et al. gRNA Design: How its evolution impacted on CRISPR/Cas9 systems refinement[J]. Biomolecules, 2023, 13 (12): 1698.
doi: 10.3390/biom13121698 |
48 |
ZHANG S J , HUANG W Z , REN L L , et al. Comparison of viral RNA-host protein interactomes across pathogenic RNA viruses informs rapid antiviral drug discovery for SARS-CoV-2[J]. Cell Res, 2022, 32 (1): 9- 23.
doi: 10.1038/s41422-021-00581-y |
49 | 张羽欣, 王树茂, 段宏勇, 等. 猪传染性胃肠炎病毒TaqMan实时荧光定量PCR检测方法的建立与应用[J]. 中国兽医科学, 2024, (4): 1- 8. |
ZHANG Y X , WANG S M , DUAN H Y , et al. Establishment and application of TaqMan real-time quantitative PCR for detection of porcine transmissible gastroenteritis virus[J]. Chinese Veterinary Science, 2024, (4): 1- 8. | |
50 | 董珮玲. 猪传染性胃肠炎病毒N蛋白单克隆抗体的制备及其初步应用[D]. 武汉: 华中农业大学, 2023. |
DONG P L. Preparation of monoclonal antibody to Transmissiblegastroenteritis virus N protein and its initial application[D]. Wuhan: Huazhong Agricultural University, 2023. (in Chinese) | |
51 |
WHITWORTH K M , ROWLAND R , PETROVAN V , et al. Resistance to coronavirus infection in amino peptidase N-deficient pigs[J]. Transgenic Res, 2019, 28 (1): 21- 32.
doi: 10.1007/s11248-018-0100-3 |
52 |
XIAO W W , WANG X L , WANG J , et al. Replicative capacity of four porcine enteric coronaviruses in LLC-PK1 cells[J]. Arch Virol, 2021, 166 (3): 935- 941.
doi: 10.1007/s00705-020-04947-2 |
53 | ZHANG S S , CAO Y N , XU C , et al. Integrated metabolomics and transcriptomics analyses reveal metabolic responses to TGEV infection in porcineintestinal epithelial cells[J]. J Gen Virol, 2023, 104 (12): 10. |
54 |
MA X L , ZHAO X M , ZHANG Z C , et al. Differentially expressed non-coding RNAs induced by transmissible gastroenteritis virus potentially regulate inflammation and NF-κB pathway in porcine intestinal epithelial cell line[J]. BMC Genomics, 2018, 19 (1): 747.
doi: 10.1186/s12864-018-5128-5 |
55 |
李宇航, 罗仍卓么, 王兴平, 等. NF-κB信号通路调控奶牛乳腺炎的分子作用机制[J]. 畜牧兽医学报, 2021, 52 (10): 2740- 2752.
doi: 10.11843/j.issn.0366-6964.2021.010.005 |
LI Y H , LUORENG Z M , WANG X P , et al. Molecular regulatory mechanism of NF-κB signaling pathway regulating mastitis in dairy Cows[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (10): 2740- 2752.
doi: 10.11843/j.issn.0366-6964.2021.010.005 |
|
56 |
MA X L , ZHAO X M , WANG K L , et al. Identification and analysis of long non-coding RNAs that are involved in inflammatory process in response to transmissible gastroenteritis virus infection[J]. BMC Genomics, 2019, 20 (1): 806.
doi: 10.1186/s12864-019-6156-5 |
57 | PAN W Z , DU J , ZHANG L Y , et al. The roles of NF-κB in the development of lung injury after one-lung ventilation[J]. Eur Rev Med Pharmacol Sci, 2018, 22 (21): 7414- 7422. |
58 | LAWRENCE T . The nuclear factor NF-kappaB pathway in inflammation[J]. Cold Spring Harb Perspect Biol, 2009, 1 (6): a001651. |
[1] | 贾红敏, 马永航, 贺平丽, 谯仕彦. 过量赖氨酸对断奶仔猪及其肠道上皮细胞的影响[J]. 畜牧兽医学报, 2021, 52(7): 1912-1926. |
[2] | 李美娣, 赵锃珏, 刘汉清, 傅嘉莉, 张玲华, 武力. 肠道免疫相关的猪富含半胱氨酸肠蛋白2三维建模、分子特征及mRNA表达的组织分布[J]. 畜牧兽医学报, 2021, 52(11): 3194-3207. |
[3] | 王怡梦, 刘雪姣, 王倩, 魏庆, 窦彩霞, 尚智援, 乔家运, 李海花. 沙门菌通过NF-κB/β-catenin信号通路引致IPEC-J2损伤的分子机制[J]. 畜牧兽医学报, 2021, 52(1): 235-245. |
[4] | 王忠清, 林春发, 钟文杰, 罗艺晨, 朱兆荣, 刘娟. 术芩提取液对脂多糖损伤的IPEC-J2细胞增殖及炎症因子转录的影响[J]. 畜牧兽医学报, 2019, 50(7): 1500-1508. |
[5] | 王晓朋, 徐奎, 魏迎辉, 张秀玲, 刘莎莎, 邱乙卿, 刘颖, 赵海全, 牟玉莲, 李奎. CRISPR/Cas9介导的猪IPEC-J2细胞CD13基因敲除细胞系的建立[J]. 畜牧兽医学报, 2019, 50(7): 1319-1327. |
[6] | 彭成璐, 张瑜, 丁雪东, 李玉, 冯士彬, 王希春, 李锦春, 吴金节. 7S β-伴大豆球蛋白通过NF-κB信号通路引起IPEC-J2细胞的炎性反应[J]. 畜牧兽医学报, 2019, 50(4): 870-878. |
[7] | 陈新瑶, 张建龙, 董星, 陈景杰, 黄一帆, 李健. 猴头菇多糖对氧化应激的IPEC-J2细胞抗氧化能力及紧密连接蛋白ZO-1的影响[J]. 畜牧兽医学报, 2017, 48(9): 1769-1776. |
[8] | 余长松,贾刚,邓秋红,陈小玲,赵华,刘光芒,王康宁. 胰高血糖素样肽-2对脂多糖应激的IPEC-J2细胞形态和紧密连接相关基因表达的影响[J]. 畜牧兽医学报, 2015, 46(4): 592-599. |
[9] | 冷勇,宋振辉,卿家超,翟少华,买买提·艾孜子. 猪传染性胃肠炎病毒M、sM基因重组杆状病毒的构建及病毒样颗粒的组装[J]. 畜牧兽医学报, 2013, 44(9): 1432-1437. |
[10] | 陈德龙,朱宏亮,许光勇,王明,姜金奇,乔雨,任晓明. 乳酸菌对IPEC-J2细胞黏着斑激酶磷酸化及紧密连接蛋白Occludin表达的影响[J]. 畜牧兽医学报, 2013, 44(2): 283-288. |
[11] | 张坤;何启盖. 猪流行性腹泻病毒、猪传染性胃肠炎病毒和猪A群轮状病毒多重RT-PCR检测方法的建立及临床应用[J]. 畜牧兽医学报, 2010, 41(8): 1001-1005. |
[12] | 殷华平;郭万柱;宋振辉;孙志勇;徐志文;王小玉;陈进会;杨丽. 猪传染性胃肠炎病毒SCY株3′端8.5 kb片段的克隆及序列特征分析[J]. 畜牧兽医学报, 2007, 38(1): 66-71. |
[13] | 程 杰;柳纪省;吴 润;殷相平;李宝玉;兰 喜;王 辉. TGEV的sM、M和N基因克隆及特征分析[J]. 畜牧兽医学报, 2005, 36(7): 695-700. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||