畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (7): 2951-2962.doi: 10.11843/j.issn.0366-6964.2024.07.015
李婉卿1(), 曾亚琦1,2, 姚新奎1,2, 王建文1,2, 袁鑫鑫1, 孟晨1, 孙远方1, 彭宣1, 孟军1,2,*(
)
收稿日期:
2023-12-25
出版日期:
2024-07-23
发布日期:
2024-07-24
通讯作者:
孟军
E-mail:1085037205@qq.com;junm86@qq.com
作者简介:
李婉卿(1999-),女,新疆乌苏人,硕士生,主要从事动物生产学研究,E-mail:1085037205@qq.com
基金资助:
Wanqing LI1(), Yaqi ZENG1,2, Xinkui YAO1,2, Jianwen WANG1,2, Xinxin YUAN1, Chen MENG1, Yuanfang SUN1, Xuan PENG1, Jun MENG1,2,*(
)
Received:
2023-12-25
Online:
2024-07-23
Published:
2024-07-24
Contact:
Jun MENG
E-mail:1085037205@qq.com;junm86@qq.com
摘要:
旨在通过对伊犁马不同肉用性能血液转录组进行研究,筛选并分析差异表达基因,为后续伊犁马肉用性能相关研究提供分子基础。本研究从112匹肉用型伊犁马核心群中选取4~5岁健康状况良好的伊犁马母马12匹,依据背膘厚4.4 mm,眼肌面积31.5 cm2以上为肉用性能较好组马匹(HW组),平均体重为528.67 kg;背膘厚度2.2 mm,眼肌面积19.5 cm2以下为普通组马匹(LW组),平均体重为327.00 kg,每组各6匹,采集血样进行转录组测序。生物信息学分析结果表明,筛选出差异表达基因共370个(P<0.05),其中上调基因158个,下调基因212个。GO功能富集分析显示,伊犁马肉用性能可能与G-蛋白偶联受体信号通路过程、细胞外区域、跨膜信号受体活性等条目有关。KEGG通路分析显示,伊犁马肉用性能可能与蛋白质的消化和吸收、甲状腺激素合成、皮质醇的合成和分泌等通路有关。CTSH、SSTR1、APOA1和ITM2A等是影响伊犁马肉用性能的候选基因,研究结果为肉用型伊犁马生长发育的分子调控机制提供参考。
中图分类号:
李婉卿, 曾亚琦, 姚新奎, 王建文, 袁鑫鑫, 孟晨, 孙远方, 彭宣, 孟军. 肉用型伊犁马的血液转录组比较分析[J]. 畜牧兽医学报, 2024, 55(7): 2951-2962.
Wanqing LI, Yaqi ZENG, Xinkui YAO, Jianwen WANG, Xinxin YUAN, Chen MENG, Yuanfang SUN, Xuan PENG, Jun MENG. Comparative Analysis of Blood Transcriptome in Yili Horses Bred for Meat Performance[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2951-2962.
表 1
qRT-PCR引物序列信息"
基因Gene | 引物序列(5′→3′) Primer sequence | 片段长度/bp Amplicon length | 退火温度/℃ The annealing temperature |
CTSH | S: GAACCCTACTTTCTGCCTGTGAC | 296 | 60 |
A: TCCACAGCAACCAGGTCTTCA | |||
SSTR1 | S: TGCCTGTGCTACGTGCTCATC | 179 | 60 |
A: TGCTCTGCGAACACGTTGAC | |||
APOA1 | S: AGGCCAGCGAGCATCTGAA | 148 | 60 |
A: CACTGGGGAGTCAGCTGCTT | |||
ITM2A | S: ATCATTGATGTGCCTGTCCCTAG | 244 | 60 |
A: GAATCTCCTCCACAGCAACCAG | |||
ENPP1 | S: CATCAGAGCTTTGCAGAGGGTG | 205 | 60 |
A: CAGTCGAGCTGCTGGTCCATAT | |||
ADCY5 | S: GTGTTTCCTGCTGCTGACCTT | 241 | 60 |
A: CTGGCTGGCACTGATGTTGT | |||
GAPDH | S: ATGGTGAAGGTCGGAGTAAACG | 154 | 60 |
A: CATGGGTGGAATCATACTGAAACA |
表 2
RNA-seq数据质量检测"
样品名称 Sample name | 有效数据 Clean reads | 总碱基数/bp Clean bases | Q20/% | Q30/% | GC含量/% GC content |
HW_1 | 43 047 628 | 6.46G | 97.76 | 93.86 | 53.26 |
HW_2 | 42 895 758 | 6.43G | 98.05 | 94.54 | 55.99 |
HW_3 | 42 721 614 | 6.41G | 97.36 | 92.74 | 55.84 |
HW_4 | 41 509 194 | 6.23G | 98.04 | 94.5 | 55.07 |
HW_5 | 49 324 110 | 7.40G | 98.03 | 94.48 | 53.94 |
HW_6 | 44 421 312 | 6.66G | 97.94 | 94.23 | 54.15 |
LW_1 | 42 901 198 | 6.44G | 97.79 | 93.84 | 55.44 |
LW_2 | 42 992 694 | 6.45G | 98.01 | 94.49 | 54.47 |
LW_3 | 38 784 926 | 5.82G | 98.02 | 94.52 | 57.08 |
LW_4 | 41 383 728 | 6.21G | 97.93 | 94.45 | 53.49 |
LW_5 | 46 199 410 | 6.93G | 97.93 | 94.27 | 56.15 |
LW_6 | 47 328 778 | 7.10G | 97.96 | 94.32 | 55.69 |
表 3
Reads与参考基因组比对情况"
样品名称 Sample name | 有效数据 Total reads | 有效数据比对占比 Total mapped | 未比对 Unsplice mapped | 唯一比对 Unique mapped | 多处比对 Multi mapped |
HW_1 | 43 047 628 | 40 667 421(94.47%) | 21 706 035(50.42%) | 39 266 595(91.22%) | 1 400 826(3.25%) |
HW_2 | 42 895 758 | 40 906 325(95.36%) | 21 879 648(51.01%) | 39 602 495(92.32%) | 1 303 830(3.04%) |
HW_3 | 42 721 614 | 40 343 393(94.43%) | 21 195 116(49.61%) | 38 947 985(91.17%) | 1 395 408(3.27%) |
HW_4 | 41 509 194 | 39 685 953(95.61%) | 21 551 802(51.92%) | 38 402 846(92.52%) | 1 283 107(3.09%) |
HW_5 | 49 324 110 | 46 657 915(94.59%) | 23 415 561(47.47%) | 44 904 565(91.04%) | 1 753 350(3.55%) |
HW_6 | 44 421 312 | 41 947 291(94.43%) | 21 270 572(47.88%) | 40 545 723(91.28%) | 1 401 568(3.16%) |
LW_1 | 42 901 198 | 40 815 273(95.14%) | 20 699 091(48.25%) | 39 346 774(91.71%) | 1 468 499(3.42%) |
LW_2 | 42 992 694 | 40 845 397(95.01%) | 21 132 998(49.15%) | 39 490 684(91.85%) | 1 354 713(3.15%) |
LW_3 | 38 784 926 | 36 540 202(94.21%) | 18 138 227(46.77%) | 35 206 863(90.77%) | 1 333 339(3.44%) |
LW_4 | 41 383 728 | 39 309 987(94.99%) | 21 288 912(51.44%) | 37 975 268(91.76%) | 1 334 719(3.23%) |
LW_5 | 46 199 410 | 43 935 460(95.10%) | 23 816 526(51.55%) | 42 427 868(91.84%) | 1 507 592(3.26%) |
LW_6 | 47 328 778 | 45 111 705(95.32%) | 24 740 501(52.27%) | 43 491 387(91.89%) | 1 620 318(3.42%) |
1 | 王建文, 李林玲, 王镜力, 等. 伊犁马ACTN3基因外显子多态性研究[J]. 畜牧兽医学报, 2018, 49 (6): 1299- 1306. |
WANG J W , LI L L , WANG J L , et al. Analysis on ACTN3 gene exon polymorphism of Yili horse[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49 (6): 1299- 1306. | |
2 | 彭宣, 王彤亮, 鲍奕柯, 等. 伊犁马体尺与心脏结构和功能参数的关联性分析[J]. 畜牧兽医学报, 2023, 54 (11): 4615- 4624. |
PENG X , WANG T L , BAO Y K , et al. Correlation analysis between body size and cardiac structural and functional parameters in Yili horses[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (11): 4615- 4624. | |
3 |
李涛涛, 聂清清, 王芊与, 等. 基于SWOT分析伊犁马产业发展策略探索[J]. 农业技术与装备, 2023, (5): 54- 56.
doi: 10.3969/j.issn.1673-887X.2023.05.020 |
LI T T , NIE Q Q , WANG Q Y , et al. Research on the development strategy of Yili horse industry based on SWOT analysis[J]. Agricultural Technology & Equipment, 2023, (5): 54- 56.
doi: 10.3969/j.issn.1673-887X.2023.05.020 |
|
4 | 孟军. 昭苏马场伊犁马杂交改良效果初步研究[D]. 乌鲁木齐: 新疆农业大学, 2010. |
MENG J. A primary study on improved effect of Yili horse by hybridized in Zhaosu stud[D]. Urumqi: Xinjiang Agricultural University, 2010. (in Chinese) | |
5 |
吐尔逊江·吾木尔艾力, 喀尔肯·马木尔汗, 团勇, 等. 伊犁马青年种公马体尺体重相关性研究[J]. 中国草食动物科学, 2022, 42 (1): 72- 75.
doi: 10.3969/j.issn.2095-3887.2022.01.016 |
TUERXUNJIANG·WUMUERAILI , KAERKEN·MAMUERHAN , TUAN Y , et al. Study on correlation between body size and weight of young Ili stallion[J]. China Herbivore Science, 2022, 42 (1): 72- 75.
doi: 10.3969/j.issn.2095-3887.2022.01.016 |
|
6 | 闫睛. 伊犁马HSL、DGAT1和LPL基因多态性及其与肉质性状相关性研究[D]. 乌鲁木齐: 新疆农业大学, 2020. |
YAN Q. The correlation analysis research between HSL, DGAT1 and LPL gene polymorphism with meat quality traits in Yili horse[D]. Urumqi: Xinjiang Agricultural University, 2020. (in Chinese) | |
7 |
STANISŁAWCZYK R , ŻUREK J , RUDY M , et al. Influence of horse age on carcass tissue composition and horsemeat quality: exploring nutritional and health benefits for gourmets[J]. Appl Sci, 2023, 13 (20): 11293.
doi: 10.3390/app132011293 |
8 |
杨红, 徐明华. 1961—2010年世界马肉生产与效率分析[J]. 经济研究导刊, 2012, (29): 31- 33.
doi: 10.3969/j.issn.1673-291X.2012.29.015 |
YANG H , XU M H . The horse meat production in the world and its efficiency analysis during the year 1961—2010[J]. Economic Research Guide, 2012, (29): 31- 33.
doi: 10.3969/j.issn.1673-291X.2012.29.015 |
|
9 | 孙燕勇, 马凤英, 郭丽丽, 等. 动物血液转录组测序的应用研究进展[J]. 中国畜牧兽医, 2023, 50 (2): 460- 468. |
SUN Y Y , MA F Y , GUO L L , et al. Advances on the application of animal blood transcriptome[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50 (2): 460- 468. | |
10 |
ZHENG X D , CHENG J , QIN W J , et al. Whole transcriptome analysis identifies the taxonomic status of a new Chinese native cattle breed and reveals genes related to body size[J]. Front Genet, 2020, 11, 562855.
doi: 10.3389/fgene.2020.562855 |
11 |
ROPKA-MOLIK K , STEFANIUK-SZMUKIER M , ŻUKOWSKI K , et al. Transcriptome profiling of Arabian horse blood during training regimens[J]. BMC Genet, 2017, 18 (1): 31.
doi: 10.1186/s12863-017-0499-1 |
12 |
GRIFFITHS J I , WALLET P , PFLIEGER L T , et al. Circulating immune cell phenotype dynamics reflect the strength of tumor-immune cell interactions in patients during immunotherapy[J]. Proc Natl Acad Sci USA, 2020, 117 (27): 16072- 16082.
doi: 10.1073/pnas.1918937117 |
13 |
DE LIMA V A , HANSEN M , SPANGGAARD I , et al. Immune cell profiling of peripheral blood as signature for response during checkpoint inhibition across cancer types[J]. Front Oncol, 2021, 11, 558248.
doi: 10.3389/fonc.2021.558248 |
14 |
SANGLARD L P , NASCIMENTO M , MORIEL P , et al. Impact of energy restriction during late gestation on the muscle and blood transcriptome of beef calves after preconditioning[J]. BMC Genomics, 2018, 19 (1): 702.
doi: 10.1186/s12864-018-5089-8 |
15 | YU H W , RAZA S H A , PAN Y T , et al. Integrative analysis of blood transcriptomics and metabolomics reveals molecular regulation of backfat thickness in Qinchuan cattle[J]. Animals (Basel), 2023, 13 (6): 1060. |
16 | 韩信嵘. 基于转录组测序分析中国西门塔尔牛和安格斯牛脂肪沉积相关基因的差异表达[D]. 通辽: 内蒙古民族大学, 2021. |
HAN X R. Analysis of differentially expressed genes related to fat deposition in simmental and angus based on transcriptome sequencing[D]. Tongliao: Inner Mongolia Minzu University, 2021. (in Chinese) | |
17 | 李娜. miRNA、mRNA调控新疆褐牛和哈萨克牛肉质成脂性状分子机制研究[D]. 兰州: 甘肃农业大学, 2020. |
LI N. Study on molecular mechanism of miRNA and mRNA regulating the meaty fat-forming traits of Xinjiang brown cattle and Kazakh cattle[D]. Lanzhou: Gansu Agricultural University, 2020. (in Chinese) | |
18 |
李兰会, 张志胜, 孙丰梅, 等. 钙蛋白酶嫩化肉类机理[J]. 生命的化学, 2003, 23 (3): 212- 214.
doi: 10.3969/j.issn.1000-1336.2003.03.019 |
LI L H , ZHANG Z S , SUN F M , et al. Theory of calpains in meat tenderness and its developing[J]. Chemistry of Life, 2003, 23 (3): 212- 214.
doi: 10.3969/j.issn.1000-1336.2003.03.019 |
|
19 |
CHEEDIPUDI S M , ASGHAR S , MARIAN A J . Genetic ablation of the DNA damage response pathway attenuates lamin-associated dilated cardiomyopathy in mice[J]. JACC Basic Transl Sci, 2022, 7 (12): 1232- 1245.
doi: 10.1016/j.jacbts.2022.06.015 |
20 |
TRIANTAFYLLOU A , RUGGLES N . Lysosomal and cytoskeletal events in epithelial salivary tumours as assessed by imunohistochemistry for CD63 and HSP27[J]. Pathol Res Pract, 2022, 229, 153691.
doi: 10.1016/j.prp.2021.153691 |
21 | 黄建文. 天府肉羊CTSL、CTSH和CTSF基因克隆及其在部分组织器官中的表达分析[D]. 雅安: 四川农业大学, 2014. |
HUANG J W. Cloning, sequence analysis and partial tissue expression of CTSL, CTSH and CTSF gene in Tianfu goat[D]. Ya'an: Sichuan Agricultural University, 2014. (in Chinese) | |
22 | 傅楚涵. CTSHD和COSTD的制备方法及其减肥功能的研究[D]. 广州: 广东药科大学, 2018. |
FU C H. Study on the preparation of CTSHD and COSTD and their anti-obesity effect[D]. Guangzhou: Guangdong Pharmaceutical University, 2018. (in Chinese) | |
23 |
FONTANESI L , SPERONI C , BUTTAZZONI L , et al. Association between polymorphisms in cathepsin and cystatin genes with meat production and carcass traits in Italian Duroc pigs: confirmation of the effects of a cathepsin L (CTSL) gene marker[J]. Mol Biol Rep, 2012, 39 (1): 109- 115.
doi: 10.1007/s11033-011-0715-4 |
24 |
HEO Y , YOON E , JEON Y E , et al. Cryo-EM structure of the human somatostatin receptor 2 complex with its agonist somatostatin delineates the ligand-binding specificity[J]. eLife, 2022, 11, e76823.
doi: 10.7554/eLife.76823 |
25 |
NESPECA M , GIORGETTI C , NOBILE S , et al. Does whole-body hypothermia in neonates with hypoxic-ischemic encephalopathy affect surfactant disaturated-phosphatidylcholine kinetics?[J]. PLoS One, 2016, 11 (4): e0153328.
doi: 10.1371/journal.pone.0153328 |
26 |
JIN Q J , SUN J J , FANG X T , et al. Molecular characterization and polymorphisms of the caprine Somatostatin (SST) and SST Receptor 1 (SSTR1) genes that are linked with growth traits[J]. Mol Biol Rep, 2011, 38 (5): 3129- 3135.
doi: 10.1007/s11033-010-9983-7 |
27 | 赵芳芳. IGF1、SSTR1、GSKIP、CAPN4和FTO基因的遗传变异与绵羊生长和胴体性状关联性研究[D]. 兰州: 甘肃农业大学, 2018. |
ZHAO F F. Variation of IGFl, SSTRI, GSKIP, CAPN4 and FTO genes associated with ovine growth and carcass traits[D]. Lanzhou: Gansu Agricultural University, 2018. (in Chinese) | |
28 |
TURAL U , IOSIFESCU D V . Adiponectin in anorexia nervosa and its modifiers: A meta-regression study[J]. Int J Eat Disorder, 2022, 55 (10): 1279- 1290.
doi: 10.1002/eat.23753 |
29 |
RANA M N , NEELAND I J . Adipose tissue inflammation and cardiovascular disease: an update[J]. Curr Diabetes Rep, 2022, 22 (1): 27- 37.
doi: 10.1007/s11892-021-01446-9 |
30 |
GAN L , YAN J , LIU Z J , et al. Adiponectin prevents reduction of lipid-induced mitochondrial biogenesis via AMPK/ACC2 pathway in chicken adipocyte[J]. J Cell Biochem, 2015, 116 (6): 1090- 1100.
doi: 10.1002/jcb.25064 |
31 |
YAN J , YANG H , GAN L , et al. Adiponectin-impaired adipocyte differentiation negatively regulates fat deposition in chicken[J]. J Anim Physiol Anim Nutr, 2014, 98 (3): 530- 537.
doi: 10.1111/jpn.12107 |
32 |
MOREIRA G C M , BOSCHIERO C , CESAR A S M , et al. A genome-wide association study reveals novel genomic regions and positional candidate genes for fat deposition in broiler chickens[J]. BMC Genomics, 2018, 19 (1): 374.
doi: 10.1186/s12864-018-4779-6 |
33 |
WANG Z G , WANG L , ZHANG Z Z , et al. Apolipoprotein A-Ⅳ involves in glucose and lipid metabolism of rat[J]. Nutr Metab (Lond), 2019, 16, 41.
doi: 10.1186/s12986-019-0367-2 |
34 |
KIRCHNER J , BEVAN M J . Itm2a is induced during thymocyte selection and T cell activation and causes downregulation of Cd8 when overexpressed in Cd4+Cd8+ double positive thymocytes[J]. J Exp Med, 1999, 190 (2): 217- 228.
doi: 10.1084/jem.190.2.217 |
35 |
BARBER T D , BARBER M C , TOMESCU O , et al. Identification of target genes Regulated by PAX3 and PAX3-FKHR in embryogenesis and alveolar rhabdomyosarcoma[J]. Genomics, 2002, 79 (3): 278- 284.
doi: 10.1006/geno.2002.6703 |
36 |
VAN DEN PLAS D , MERREGAERT J . Constitutive overexpression of the integral membrane protein ITM2A enhances myogenic differentiation of C2C12 cells[J]. Cell Biol Int, 2004, 28 (3): 199- 207.
doi: 10.1016/j.cellbi.2003.11.019 |
37 |
LIU G Y , GE C R , ZHANG X , et al. Isolation, sequence identification and tissue expression distribution of three novel porcine genes--RAB14, S35A3 and ITM2A[J]. Mol Biol Rep, 2008, 35 (2): 201- 206.
doi: 10.1007/s11033-007-9071-9 |
38 |
TUKIAINEN T , PIRINEN M , SARIN A P , et al. Chromosome X-wide association study identifies loci for fasting insulin and height and evidence for incomplete dosage compensation[J]. PLoS Genet, 2014, 10 (2): e1004127.
doi: 10.1371/journal.pgen.1004127 |
39 |
TUCKERMANN J P , PITTOIS K , PARTRIDGE N C , et al. Collagenase-3 (MMP-13) and integral membrane protein 2A (ITM2A) are marker genes of chondrogenic/osteoblastic cells in bone formation: sequential temporal, and spatial expression of ITM2A, alkaline phosphatase, MMP-13, and osteocalcin in the mouse[J]. J Bone Miner Res, 2000, 15 (7): 1257- 1265.
doi: 10.1359/jbmr.2000.15.7.1257 |
[1] | 彭宣, 王彤亮, 孟军, 王建文, 欧阳文, 黄金龙, 黄云江, 杨曦曦, 李婉卿, 曾亚琦, 姚新奎. 2岁伊犁马心脏维度与运动性能的关联性分析[J]. 畜牧兽医学报, 2024, 55(7): 2963-2972. |
[2] | 许师源, 张留光, 刘松奇, 吴开慧, 汪超, 王栋, 庞云渭. ART3调控小鼠精子发生的作用与机制研究[J]. 畜牧兽医学报, 2024, 55(7): 2995-3010. |
[3] | 何明亮, 吕晓阳, 蒋永清, 宋正海, 王叶青, 杨会国, 王善禾, 孙伟. 基于转录组测序分析SOX18在湖羊毛囊毛乳头细胞中的功能[J]. 畜牧兽医学报, 2024, 55(6): 2409-2420. |
[4] | 李殿玉, 莫荣纤, 赵旭, 高铭, 李洪珊, 白辉盛, 马瑞仙, 李向茸, 冯若飞. 热休克蛋白27对水泡性口炎病毒体外增殖的调控作用[J]. 畜牧兽医学报, 2024, 55(6): 2540-2549. |
[5] | 李栋梁, 郑关民, 李帅, 朱洪森, 吴超. 猪流行性腹泻病毒感染仔猪空肠转录组差异表达分析[J]. 畜牧兽医学报, 2024, 55(6): 2652-2661. |
[6] | 孙雯莉, 王浩奇, 泽里磋, 高雨樊, 张非凡, 张健, 段梦琪, 商鹏, 强巴央宗. 藏猪促炎因子(IL-1β、IL-6、TNF-α)多态性及其表达与免疫性状的关联分析[J]. 畜牧兽医学报, 2024, 55(5): 1958-1969. |
[7] | 陈哲, 曲小露, 郭彬彬, 孙雪峰, 闫乐艳. 基于转录组测序研究绿光影响鹅胚心脏早期发育的候选基因[J]. 畜牧兽医学报, 2024, 55(5): 1978-1988. |
[8] | 徐俊杰, 张璐通, 王津洁, 陈晓晨, 何伟先, 蔡传江, 褚瑰燕, 杨公社. 基于多组学与网络药理学探究淫羊藿对后备母猪发情的作用[J]. 畜牧兽医学报, 2024, 55(4): 1615-1628. |
[9] | 戴帆, 刘占有, 张旭阳, 李武. 乌头酸脱羧酶1对BCG诱导巨噬细胞炎症反应的调控作用研究[J]. 畜牧兽医学报, 2024, 55(4): 1696-1706. |
[10] | 王鑫, 聂桐, 李阿群, 马隽. 橙皮苷通过氧化磷酸化途径缓解高脂饲喂诱导的小鼠肝氧化应激[J]. 畜牧兽医学报, 2024, 55(3): 1302-1313. |
[11] | 高娅薇, 彭弟, 孙朝阳, 晏子越, 崔凯, 马泽芳. 基于转录组数据挖掘外源褪黑激素影响水貂卵巢发育的分子机制[J]. 畜牧兽医学报, 2024, 55(2): 607-618. |
[12] | 肖乐, 刘峻源, 曾雯玉, 汪芹, 韩雯珏, 刘彦泠, 范誉, 徐雨婷, 杨贝妮, 肖雄, 王自力. 基于微生物组和宿主转录组整合分析香砂六君子汤对ETEC诱导断奶腹泻仔猪回肠损伤的调控机制[J]. 畜牧兽医学报, 2024, 55(2): 797-808. |
[13] | 刘益丽, 唐娇, 闵奇, 杨露, 王泽宁, 胡莲, 赵迪, 江明锋. 基于转录组数据挖掘牦牛皱胃发育代谢的关键候选基因[J]. 畜牧兽医学报, 2024, 55(1): 153-168. |
[14] | 田启会, 张亮, 龙亚丽. 黄芪影响缺氧微环境中骨髓间充质干细胞增殖活性的PI3K-AKT信号通路分析[J]. 畜牧兽医学报, 2024, 55(1): 346-354. |
[15] | 余洲, 杨柏高, 张航, 徐茜, 张培培, 冯肖艺, 曹建华, 牛一凡, 杜卫华, 郝海生, 朱化彬, 阿布力孜·吾斯曼, 赵学明. 奶水牛发情标记物的研究进展[J]. 畜牧兽医学报, 2023, 54(9): 3623-3630. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||