畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (6): 2281-2292.doi: 10.11843/j.issn.0366-6964.2024.06.001

• 综述 • 上一篇    下一篇

机器学习全基因组选择研究进展

李竟1,2(), 张元旭1,2, 王泽昭2, 陈燕2, 徐凌洋2, 张路培2, 高雪2, 高会江2, 李俊雅2, 朱波2,*(), 郭鹏1,*()   

  1. 1. 天津农学院计算机与信息工程学院, 天津 300384
    2. 中国农业科学院北京畜牧兽医研究所, 北京 100193
  • 收稿日期:2023-11-30 出版日期:2024-06-23 发布日期:2024-06-28
  • 通讯作者: 朱波,郭鹏 E-mail:lijing5467@126.com;zhubo@caas.cn;super_guopeng@163.com
  • 作者简介:李竟(1999-),男,陕西榆林人,硕士生,主要从事深度学习全基因组选择研究,E-mail:lijing5467@126.com
  • 基金资助:
    国家自然科学基金(32272843)

Research Progress in Machine Learning Genomic Selection

Jing LI1,2(), Yuanxu ZHANG1,2, Zezhao WANG2, Yan CHEN2, Lingyang XU2, Lupei ZHANG2, Xue GAO2, Huijiang GAO2, Junya LI2, Bo ZHU2,*(), Peng GUO1,*()   

  1. 1. College of Computer and Information Engineering, Tianjin Agricultural University, Tianjin 300384, China
    2. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
  • Received:2023-11-30 Online:2024-06-23 Published:2024-06-28
  • Contact: Bo ZHU, Peng GUO E-mail:lijing5467@126.com;zhubo@caas.cn;super_guopeng@163.com

摘要:

机器学习方法是全基因组选择研究的重要分支, 深度学习是近年来机器学习领域新的研究热点。本文介绍了机器学习以及深度学习全基因组选择研究的原理和应用发展, 分别从模型框架、模型参数、特征选择等方面对深度学习全基因组育种值估计研究进展进行了阐述, 探讨了深度学习全基因组选择研究中面临的一些的问题, 并对未来进行了展望。

关键词: 全基因组选择, 研究进展, 机器学习, 深度学习, 原理与应用

Abstract:

Machine learning method is an important branch of genomic selection, and deep learning has become a new research hotspot in the field of machine learning in recent years. The principles and application development of machine learning and deep learning genomic selection were introduced in this paper, and the research progress of deep learning genomic breeding value estimation from the aspects of model framework, model parameters, feature selection were elaborated. Some problems in deep learning genomic selection research were explored and prospects in the future were discussed.

Key words: genomic selection, research progress, machine learning, deep learning, principles and applications

中图分类号: