1 |
RIVERA-CHACON R , CASTILLO-LOPEZ E , RICCI S , et al. Supplementing a phytogenic feed additive modulates the risk of subacute rumen acidosis, rumen fermentation and systemic inflammation in cattle fed acidogenic diets[J]. Animals, 2022, 12 (9): 1201.
doi: 10.3390/ani12091201
|
2 |
张璐, 陈爱华, 吴清明. 肠道菌群与代谢相关脂肪性肝病[J]. 临床内科杂志, 2023, 40 (1): 6- 9.
|
|
ZHANG L , CHEN A H , WU Q M . Gut flora and metabolic associated fatty liver disease[J]. Journal of Clinical Internal Medicine, 2023, 40 (1): 6- 9.
|
3 |
STEELE M A , CROOM J , KAHLER M , et al. Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis[J]. Am J Physiol Regul Integr Comp Physiol, 2011, 300 (6): R1515- R1523.
doi: 10.1152/ajpregu.00120.2010
|
4 |
程萌. 亚急性瘤胃酸中毒对奶山羊瘤胃上皮通透性及细胞连接蛋白表达的影响[D]. 呼和浩特: 内蒙古农业大学, 2016.
|
|
CHENG M. Effect of subacute ruminal acidosis on rumen epithelium permeability and intercellula junction protein expression in dairy goats[D]. Hohhot: Inner Mongolia Agricultural University, 2016. (in Chinese)
|
5 |
魏子维, 邓铭, 孙宝丽, 等. 高精料饲粮对反刍动物胃肠道健康的影响及调控措施[J]. 动物营养学报, 2021, 33 (3): 1277- 1285.
doi: 10.3969/j.issn.1006-267x.2021.03.010
|
|
WEI Z W , DENG M , SUN B L , et al. Effects of high concentrate diet on gastrointestinal Health of ruminants and its regulation measures[J]. Chinese Journal of Animal Nutrition, 2021, 33 (3): 1277- 1285.
doi: 10.3969/j.issn.1006-267x.2021.03.010
|
6 |
KOH A , DE VADDER F , KOVATCHEVA-DATCHARY P , et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165 (6): 1332- 1345.
doi: 10.1016/j.cell.2016.05.041
|
7 |
王倩. 灰葡萄孢单羧酸转运蛋白基因BcMCT1的功能解析[D]. 杭州: 浙江工业大学, 2013.
|
|
WANG Q. Cloning and functional analisis of monocarboxylate transporter gene (BcMCT1) in Botryils cinerea[D]. Hangzhou: Zhejiang University of Technology, 2013. (in Chinese)
|
8 |
COADY M J , WALLENDORFF B , BOURGEOIS F , et al. Establishing a definitive stoichiometry for the Na+/monocarboxylate cotransporter SMCT1[J]. Biophys J, 2007, 93 (7): 2325- 2331.
doi: 10.1529/biophysj.107.108555
|
9 |
LI L P , PENG K L , XUE M Y , et al. An age effect of rumen microbiome in dairy buffaloes revealed by metagenomics[J]. Microorganisms, 2022, 10 (8): 1491.
doi: 10.3390/microorganisms10081491
|
10 |
WANG K J , ZHENG M L , REN A , et al. Effects of high rice diet on growth performance, nutrients apparent digestibility, nitrogen metabolism, blood parameters and rumen digestibility, nitrogen metabolism, blood parameters and rumen[J]. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 2019, 25 (6): 749- 755.
|
11 |
ZHANG Y , CHOI S H , NOGOY K M , et al. Review: the development of the gastrointestinal tract microbiota and intervention in neonatal ruminants[J]. Animal, 2021, 15 (8): 100316.
doi: 10.1016/j.animal.2021.100316
|
12 |
FANIYI T O , ADEGBEYE M J , ELGHANDOUR M M M Y , et al. Role of diverse fermentative factors towards microbial community shift in ruminants[J]. J Appl Microbiol, 2019, 127 (1): 2- 11.
doi: 10.1111/jam.14212
|
13 |
LI Y , DING H Y , LIU L H , et al. Non-esterified fatty acid induce dairy cow hepatocytes apoptosis via the mitochondria-mediated ROS-JNK/ERK signaling pathway[J]. Front Cell Dev Biol, 2020, 8, 245.
doi: 10.3389/fcell.2020.00245
|
14 |
MA J , SHAH A M , WANG Z S , et al. Potential protective effects of thiamine supplementation on the ruminal epithelium damage during subacute ruminal acidosis[J]. Anim Sci J, 2021, 92 (1): e13579.
doi: 10.1111/asj.13579
|
15 |
HU H L , YANG S Q , CHENG M , et al. Long-term effect of subacute ruminal acidosis on the morphology and function of rumen epithelial barrier in lactating goats[J]. J Integr Agric, 2022, 21 (11): 3302- 3313.
doi: 10.1016/j.jia.2022.08.087
|
16 |
薛春旭. 高精料日粮对山羊小肠微生物发酵、微生物区系及上皮形态结构的影响[D]. 南京: 南京农业大学, 2017.
|
|
XUE C X. The impact of high concentrate diet on small intestinal fermentation, microbial community and epithelial morphology of goats[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese)
|
17 |
DALILE B , VAN OUDENHOVE L , VERVLIET B , et al. The role of short-chain fatty acids in microbiota-gut-brain communication[J]. Nat Rev Gastroenterol Hepatol, 2019, 16 (8): 461- 478.
doi: 10.1038/s41575-019-0157-3
|
18 |
BIONAZ M , VARGAS-BELLO-PÉREZ E , BUSATO S . Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance[J]. J Anim Sci Biotechnol, 2020, 11 (1): 110.
doi: 10.1186/s40104-020-00512-8
|
19 |
YAN L , ZHANG B , SHEN Z M . Dietary modulation of the expression of genes involved in short-chain fatty acid absorption in the rumen epithelium is related to short-chain fatty acid concentration and pH in the rumen of goats[J]. J Dairy Sci, 2014, 97 (9): 5668- 5675.
doi: 10.3168/jds.2013-7807
|
20 |
刘军花, 朱伟云, 毛胜勇. 高谷物日粮促进山羊瘤胃上皮单羧酸转运蛋白1及钠钾ATP酶mRNA的表达[J]. 草业学报, 2017, 26 (2): 95- 101.
|
|
LIU J H , ZHU W Y , MAO S Y . A high-grain diet promotes expression of MCT1 and Na+/K+-ATPase mRNAs in the ruminal epithelium of goats[J]. Acta Prataculturae Sinica, 2017, 26 (2): 95- 101.
|
21 |
苏效双, 张春刚, 刘光磊, 等. 单羧酸转运蛋白: 在挥发性脂肪酸转运中的作用及影响基因表达的因素[J]. 动物营养学报, 2016, 28 (9): 2709- 2714.
|
|
SU X S , ZHANG C G , LIU G L , et al. Monocarboxylate transporters: function in volatile fatty acid transport and gene expression influencing factors[J]. Chinese Journal of Animal Nutrition, 2016, 28 (9): 2709- 2714.
|
22 |
MAO S Y , ZHANG R Y , WANG D S , et al. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing[J]. Anaerobe, 2013, 24, 12- 19.
doi: 10.1016/j.anaerobe.2013.08.003
|
23 |
KHAFIPOUR E , LI S C , PLAIZIER J C , et al. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis[J]. Appl Environ Microbiol, 2009, 75 (22): 7115- 7124.
doi: 10.1128/AEM.00739-09
|
24 |
KIM Y H , NAGATA R , OHKUBO A , et al. Changes in ruminal and reticular pH and bacterial communities in Holstein cattle fed a high-grain diet[J]. BMC Vet Res, 2018, 14 (1): 310.
doi: 10.1186/s12917-018-1637-3
|
25 |
LIU J H , XU T T , ZHU W Y , et al. High-grain feeding alters caecal bacterial microbiota composition and fermentation and results in caecal mucosal injury in goats[J]. Br J Nutr, 2014, 112 (3): 416- 427.
doi: 10.1017/S0007114514000993
|
26 |
金磊, 王立志, 王之盛, 等. 基于高通量测序技术对山羊盲肠细菌多样性的分析[J]. 微生物学通报, 2019, 46 (6): 1423- 1433.
|
|
JIN L , WANG L Z , WANG Z S , et al. Analysis of cecum bacterial diversity of goat based on Illumina MiSeq sequencing[J]. Microbiology China, 2019, 46 (6): 1423- 1433.
|
27 |
TIGCHELAAR E F , BONDER M J , JANKIPERSADSING S A , et al. Gut microbiota composition associated with stool consistency[J]. Gut, 2016, 65 (3): 540- 542.
|
28 |
王悦. 湖羊结肠微生物区系及上皮形态和功能对高精料日粮的适应性应答研究[D]. 南京: 南京农业大学, 2018.
|
|
WANG Y. The adaptive response of the microbiota and epithelial morphology and function to high grain diets in the colon of Hu sheep[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese)
|
29 |
HOSSAIN M E . Sub-acute ruminal acidosis in dairy cows: its causes, consequences and preventive measures[J]. Online J Anim Feed Res, 2020, 10 (6): 302- 312.
|
30 |
SCHIRMER M , GARNER A , VLAMAKIS H , et al. Microbial genes and pathways in inflammatory bowel disease[J]. Nat Rev Microbiol, 2019, 17 (8): 497- 511.
|