畜牧兽医学报 ›› 2021, Vol. 52 ›› Issue (4): 909-919.doi: 10.11843/j.issn.0366-6964.2021.04.007
苏恺1, 范葶莉2, 宋勤叶1*
收稿日期:
2020-09-27
出版日期:
2021-04-23
发布日期:
2021-04-25
通讯作者:
宋勤叶,主要从事动物传染病与新型生物制品研究,E-mail:songqinye@126.com
作者简介:
苏恺(1988-),男,河南郑州人,博士,主要从事动物传染病与新型生物制品研究,E-mail:sukai0324@126.com
基金资助:
SU Kai1, FAN Tingli2, SONG Qinye1*
Received:
2020-09-27
Online:
2021-04-23
Published:
2021-04-25
摘要: 铁蛋白是广泛存在于几乎所有生命体中的储铁蛋白,具有储存和转化铁、维持细胞铁代谢平衡以及保护细胞免受氧化损伤等功能。铁蛋白亚基能够自组装成纳米笼,装载和运输各种金属、药物、显影剂等多种物质,并且铁蛋白具有易被修饰以及良好的生物相容性和靶向性等特点,使其成为生物医学领域应用潜力巨大的非病毒天然纳米材料。本文重点综述了铁蛋白的结构和生物学功能,以及基于铁蛋白搭建的纳米载体平台在疾病检测、纳米疫苗和药物载体等领域的研究进展及应用前景,旨在为基于铁蛋白纳米颗粒的相关研究提供参考。
中图分类号:
苏恺, 范葶莉, 宋勤叶. 铁蛋白纳米载体及其在生物医学领域的应用潜力[J]. 畜牧兽医学报, 2021, 52(4): 909-919.
SU Kai, FAN Tingli, SONG Qinye. Ferritin Nanocarrier and Its Application Potential in the Field of Biomedicine[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4): 909-919.
[1] | DEMCHUK A M, PATEL T R. The biomedical and bioengineering potential of protein nanocompartments[J]. Biotechnol Adv, 2020, 41:107547. |
[2] | STANLEY S. Biological nanoparticles and their influence on organisms[J]. Curr Opin Biotechnol, 2014, 28:69-74. |
[3] | 张婷婷. 基于铁蛋白的纳米结构可控自组装与功能化[D]. 开封:河南大学, 2016.ZHANG T T. Controllable self-assembly and functionalization of ferritin based nanostructure[D]. Kaifeng:Henan University, 2016. (in Chinese) |
[4] | VENTOLA C L. Progress in nanomedicine:Approved and investigational nanodrugs[J]. P T, 2017, 42(12):742-755. |
[5] | LAUFBERGER V. Sur la cristallisation de la ferritine[J]. Bull Soc Chim Biol, 1937, 19(2):1575-1582. |
[6] | LAWSON D M, ARTYMIUK P J, YEWDALL S J, et al. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts[J]. Nature, 1991, 349(6309):541-544. |
[7] | CHAKRABORTI S, CHAKRABARTI P. Self-assembly of ferritin:structure, biological function and potential applications in nanotechnology[J]. Adv Exp Med Biol, 2019, 1174:313-329. |
[8] | TRUFFI M, FIANDRA L, SORRENTINO L, et al. Ferritin nanocages:A biological platform for drug delivery, imaging and theranostics in cancer[J]. Pharmacol Res, 2016, 107:57-65. |
[9] | HARRISON P M, AROSIO P. The ferritins:molecular properties, iron storage function and cellular regulation[J]. Biochim Biophys Acta, 1996, 1275(3):161-203. |
[10] | MCHUGH C A, FONTANA J, NEMECEK D, et al. A virus capsid-like nanocompartment that stores iron and protects bacteria from oxidative stress[J]. EMBO J, 2014, 33(17):1896-1911. |
[11] | ZHANG Y, ORNER B P. Self-assembly in the ferritin nano-cage protein superfamily[J]. Int J Mol Sci, 2011, 12(8):5406-5421. |
[12] | KIM M, RHO Y, JIN K S, et al. pH-dependent structures of ferritin and apoferritin in solution:disassembly and reassembly[J]. Biomacromolecules, 2011, 12(5):1629-1640. |
[13] | JUTZ G, BÖKER A. Bionanoparticles as functional macromolecular building blocks-A new class of nanomaterials[J]. Polymer, 2011, 52(2):211-232. |
[14] | HE D D, PIERGENTILI C, ROSS J, et al. Conservation of the structural and functional architecture of encapsulated ferritins in bacteria and archaea[J]. Biochem J, 2019, 476(6):975-989. |
[15] | EBRAHIMI K H, HAGEDOORN P L, HAGEN W R. Unity in the biochemistry of the iron-storage proteins ferritin and bacterioferritin[J]. Chem Rev, 2015, 115(1):295-326. |
[16] | ZANG J C, CHEN H, ZHAO G H, et al. Ferritin cage for encapsulation and delivery of bioactive nutrients:From structure, property to applications[J]. Crit Rev Food Sci Nutr, 2017, 57(17):3673-3683. |
[17] | HE D D, MARLES-WRIGHT J. Ferritin family proteins and their use in bionanotechnology[J]. New Biotechnol, 2015, 32(6):651-657. |
[18] | YANG R, CHEN L, YANG S, et al. 2D square arrays of protein nanocages through channel-directed electrostatic interactions with poly(α, l-lysine)[J]. Chem Commun, 2014, 50(22):2879-2882. |
[19] | CHANDRAMOULI B, BERNACCHIONI C, DI MAIO D, et al. Electrostatic and structural bases of Fe2+ translocation through ferritin channels[J]. J Biol Chem, 2016, 291(49):25617-25628. |
[20] | UCHIDA M, KANG S, REICHHARDT C, et al. The ferritin superfamily:Supramolecular templates for materials synthesis[J]. Biochim Biophys Acta, 2010, 1800(8):834-845. |
[21] | JUTZ G, VAN RIJN P, MIRANDA B S, et al. Ferritin:a versatile building block for bionanotechnology[J]. Chem Rev, 2015, 115(4):1653-1701. |
[22] | PHAM D Q D, WINZERLING J J. Insect ferritins:Typical or atypical[J]. Biochim Biophys Acta, 2010, 1800(8):824-833. |
[23] | ORINO K, LEHMAN L, TSUJI Y, et al. Ferritin and the response to oxidative stress[J]. Biochem J, 2001, 357(Pt 1):241-247. |
[24] | KEREN N, AURORA R, PAKRASI H B. Critical roles of bacterioferritins in iron storage and proliferation of cyanobacteria[J]. Plant Physiol, 2004, 135(3):1666-1673. |
[25] | CRICHTON R R, DECLERCQ J P. X-ray structures of ferritins and related proteins[J]. Biochim Biophys Acta, 2010, 1800(8):706-718. |
[26] | CARRONDO M A. Ferritins, iron uptake and storage from the bacterioferritin viewpoint[J]. EMBO J, 2003, 22(9):1959-1968. |
[27] | ZETH K. Dps biomineralizing proteins:multifunctional architects of nature[J]. Biochem J, 2012, 445(3):297-311. |
[28] | CHIANCONE E, CECI P. The multifaceted capacity of Dps proteins to combat bacterial stress conditions:Detoxification of iron and hydrogen peroxide and DNA binding[J]. Biochim Biophys Acta, 2010, 1800(8):798-805. |
[29] | SUTTER M, BOEHRINGER D, GUTMANN S, et al. Structural basis of enzyme encapsulation into a bacterial nanocompartment[J]. Nat Struct Mol Biol, 2008, 15(9):939-947. |
[30] | ZETH K, HOICZYK E, OKUDA M. Ferroxidase-mediated iron oxide biomineralization:Novel pathways to multifunctional nanoparticles[J]. Trends Biochem Sci, 2016, 41(2):190-203. |
[31] | RAHMANPOUR R, BUGG T D H. Assembly in vitro of Rhodococcus jostii RHA1 encapsulin and peroxidase DypB to form a nanocompartment[J]. FEBS J, 2013, 280(9):2097-2104. |
[32] | RAHMANPOUR R, BUGG T D H. Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5:Oxidation of Mn(II) and polymeric lignin by Dyp1B[J]. Arch Biochem Biophys, 2015, 574:93-98. |
[33] | SITIA L, SEVIERI M, BONIZZI A, et al. Development of tumor-targeted indocyanine green-loaded ferritin nanoparticles for intraoperative detection of cancers[J]. ACS Omega, 2020, 5(21):12035-12045. |
[34] | JIANG B, FANG L, WU K M, et al. Ferritins as natural and artificial nanozymes for theranostics[J]. Theranostics, 2020, 10(2):687-706. |
[35] | XUE L, DENG D W, SUN J F. Magnetoferritin:process, prospects, and their biomedical applications[J]. Int J Mol Sci, 2019, 20(10):2426. |
[36] | LI L, FANG C J, RYAN J C, et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1[J]. Proc Natl Acad Sci U S A, 2010, 107(8):3505-3510. |
[37] | FAN K L, CAO C Q, PAN Y X, et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues[J]. Nat Nanotechnol, 2012, 7(7):459-464. |
[38] | CAO C Q, WANG X X, CAI Y, et al. Targeted in vivo imaging of microscopic tumors with ferritin-based nanoprobes across biological barriers[J]. Adv Mater, 2014, 26(16):2566-2571. |
[39] | CHEN L, ZANG F C, WU H A, et al. Using PEGylated magnetic nanoparticles to describe the EPR effect in tumor for predicting therapeutic efficacy of micelle drugs[J]. Nanoscale, 2018, 10(4):1788-1797. |
[40] | SINGH A, SAHOO S K. Magnetic nanoparticles:a novel platform for cancer theranostics[J]. Drug Discov Today, 2014, 19(4):474-481. |
[41] | CARREIRA S C, ARMSTRONG J P K, SEDDON A M, et al. Ultra-fast stem cell labelling using cationised magnetoferritin[J]. Nanoscale, 2016, 8(14):7474-7483. |
[42] | CHARLTON J R, PEARL V M, DENOTTI A R, et al. Biocompatibility of ferritin-based nanoparticles as targeted MRI contrast agents[J]. Nanomedicine, 2016, 12(6):1735-1745. |
[43] | CAI Y, WANG Y Q, XU H T, et al. Positive magnetic resonance angiography using ultrafine ferritin-based iron oxide nanoparticles[J]. Nanoscale, 2019, 11(6):2644-2654. |
[44] | RADOUL M, LEWIN L, COHEN B, et al. Genetic manipulation of iron biomineralization enhances MR relaxivity in a ferritin-M6A chimeric complex[J]. Sci Rep, 2016, 6:26550. |
[45] | MELNIKOVA L, POSPISKOVA K, MITROOVA Z, et al. Peroxidase-like activity of magnetoferritin[J]. Mikrochim Acta, 2014, 181(3):295-301. |
[46] | ZHANG W, LIU X Y, WALSH D, et al. Caged-protein-confined bimetallic structural assemblies with mimetic peroxidase activity[J]. Small, 2012, 8(19):2948-2953. |
[47] | LI L, ZHANG L, CARMONA U, et al. Semi-artificial and bioactive ferroxidase with nanoparticles as the active sites[J]. Chem Commun, 2014, 50(59):8021-8023. |
[48] | WANG T, HE J Y, DUAN D M, et al. Bioengineered magnetoferritin nanozymes for pathological identification of high-risk and ruptured atherosclerotic plaques in humans[J]. Nano Res, 2019, 12(4):863-868. |
[49] | ZHAO S, DUAN H X, YANG Y L, et al. Fenozyme protects the integrity of the blood-brain barrier against experimental cerebral malaria[J]. Nano Lett, 2019, 19(12):8887-8895. |
[50] | FAN K L, XI J Q, FAN L, et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy[J]. Nat Commun, 2018, 9(1):1440. |
[51] | JIANG B, YAN L, ZHANG J L, et al. Biomineralization synthesis of the cobalt nanozyme in SP94-ferritin nanocages for prognostic diagnosis of hepatocellular carcinoma[J]. ACS Appl Mater Interfaces, 2019, 11(10):9747-9755. |
[52] | ZHANG W, ZHANG Y, CHEN Y H, et al. Prussian blue modified ferritin as peroxidase mimetics and its applications in biological detection[J]. J Nanosci Nanotechnol, 2013, 13(1):60-67. |
[53] | JIANG X, SUN C J, GUO Y, et al. Peroxidase-like activity of apoferritin paired gold clusters for glucose detection[J]. Biosens Bioelectron, 2015, 64:165-170. |
[54] | LIU X Y, WEI W, YUAN Q, et al. Apoferritin-CeO2 nano-truffle that has excellent artificial redox enzyme activity[J]. Chem Commun, 2012, 48(26):3155-3157. |
[55] | DASHTESTANI F, GHOURCHIAN H, NAJAFI A. Silver-gold-apoferritin nanozyme for suppressing oxidative stress during cryopreservation[J]. Mater Sci Eng C, 2019, 94:831-840. |
[56] | KANEKIYO M, WEI C J, YASSINE H M, et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1 N1 antibodies[J]. Nature, 2013, 499(7456):102-106. |
[57] | KANEKIYO M, BU W, JOYCE M G, et al. Rational design of an epstein-barr virus vaccine targeting the receptor-binding site[J]. Cell, 2015, 162(5):1090-1100. |
[58] | GEORGIEV I S, JOYCE M G, CHEN R E, et al. Two-component ferritin nanoparticles for multimerization of diverse trimeric antigens[J]. ACS Infect Dis, 2018, 4(5):788-796. |
[59] | POWELL A E, ZHANG K M, SANYAL M, et al. A single immunization with spike-functionalized ferritin vaccines elicits neutralizing antibody responses against SARS-CoV-2 in mice[J]. bioRxiv, 2020, doi:10. 1101/2020. 08. 28. 272518. |
[60] | YAN Y, WANG X S, LOU P L, et al. A nanoparticle-based hepatitis C virus vaccine with enhanced potency[J]. J Infect Dis, 2020, 221(8):1304-1314. |
[61] | 李志鹏. 口服轮状病毒铁蛋白纳米疫苗生物反应器的制备及免疫学功能的初步研究[D]. 南宁:广西大学, 2019.LI Z P. A preliminary study on production and imminological function of oral rotavirus ferritin nanovaccine[D]. Nanning:Guangxi University, 2019. (in Chinese) |
[62] | SWANSON K A, RAINHO-TOMKO J N, WILLIAMS Z P, et al. A respiratory syncytial virus (RSV) F protein nanoparticle vaccine focuses antibody responses to a conserved neutralization domain[J]. Sci Immunol, 2020, 5(47):eaba6466. |
[63] | KAMP H D, SWANSON K A, WEI R R, et al. Design of a broadly reactive Lyme disease vaccine[J]. NPJ Vaccines, 2020, 5(1):33. |
[64] | WANG Z T, XU L F, YU H, et al. Ferritin nanocage-based antigen delivery nanoplatforms:epitope engineering for peptide vaccine design[J]. Biomater Sci, 2019, 7(5):1794-1800. |
[65] | KELLY H G, TAN H X, JUNO J A, et al. Self-assembling influenza nanoparticle vaccines drive extended germinal center activity and memory B cell maturation[J]. JCI Insight, 2020, 5(10):e136653 |
[66] | WANG W J, ZHOU X X, BIAN Y J, et al. Dual-targeting nanoparticle vaccine elicits a therapeutic antibody response against chronic hepatitis B[J]. Nat Nanotechnol, 2020, 15(5):406-416. |
[67] | QU Z H, GUO Y L, LI M Z, et al. Recombinant ferritin nanoparticles can induce dendritic cell maturation through TLR4/NF-κB pathway[J]. Biotechnol Lett, 2020, 42(12):2489-2500. |
[68] | MACONE A, MASCIARELLI S, PALOMBARINI F, et al. Ferritin nanovehicle for targeted delivery of cytochrome C to cancer cells[J]. Sci Rep, 2019, 9(1):11749. |
[69] | MICHELA B, MAZZUCCHELLI S, GALBIATI E, et al. Protein nanocages for self-triggered nuclear delivery of DNA-targeted chemotherapeutics in Cancer Cells[J]. J Control Release, 2014, 196:184-196. |
[70] | JIANG B, ZHANG R F, ZHANG J L, et al. GRP78-targeted ferritin nanocaged ultra-high dose of doxorubicin for hepatocellular carcinoma therapy[J]. Theranostics, 2019, 9(8):2167-2182. |
[71] | CHENG X J, FAN K L, WANG L, et al. TfR1 binding with H-ferritin nanocarrier achieves prognostic diagnosis and enhances the therapeutic efficacy in clinical gastric cancer[J]. Cell Death Dis, 2020, 11(2):92. |
[72] | YAO H C, GUO X F, ZHOU H J, et al. Mild acid-responsive "Nanoenzyme Capsule" remodeling of the tumor microenvironment to increase tumor penetration[J]. ACS Appl Mater Interfaces, 2020, 12(18):20214-20227. |
[73] | FAN K L, JIA X H, ZHOU M, et al. Ferritin nanocarrier traverses the blood brain barrier and kills glioma[J]. ACS Nano, 2018, 12(5):4105-4115. |
[74] | LIU W, LIN Q, FU Y, et al. Target delivering paclitaxel by ferritin heavy chain nanocages for glioma treatment[J]. J Control Release, 2020, 323:191-202. |
[75] | FALVO E, TREMANTE E, FRAIOLI R, et al. Antibody-drug conjugates:targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin[J]. Nanoscale, 2013, 5(24):12278-12285. |
[76] | HUANG X L, CHISHOLM J, ZHUANG J, et al. Protein nanocages that penetrate airway mucus and tumor tissue[J]. Proc Natl Acad Sci U S A, 2017, 114(32):E6595-E6602. |
[77] | ZHEN Z P, TANG W, ZHANG W Z, et al. Folic acid conjugated ferritins as photosensitizer carriers for photodynamic therapy[J]. Nanoscale, 2015, 7(23):10330-10333. |
[78] | LI L, MUÑOZ-CULLA M, CARMONA U, et al. Ferritin-mediated siRNA delivery and gene silencing in human tumor and primary cells[J]. Biomaterials, 2016, 98:143-151. |
[79] | LEE E J, LEE S J, KANG Y S, et al. Engineered proteinticles for targeted delivery of siRNA to cancer cells[J]. Adv Funct Mater, 2015, 25(8):1279-1286. |
[80] | SU W C, TAN H B, JANOWSKI R, et al. Ferritin-displayed GLP-1 with improved pharmacological activities and pharmacokinetics[J]. Mol Pharm, 2020, 17(5):1663-1673. |
[81] | MANSOURIZADEH F, ALBERTI D, BITONTO V, et al. Efficient synergistic combination effect of Quercetin with Curcumin on breast cancer cell apoptosis through their loading into Apo ferritin cavity[J]. Colloids Surf B Biointerfaces, 2020, 191:110982. |
[82] | ZHANG T, LV C Y, CHEN L L, et al. Encapsulation of anthocyanin molecules within a ferritin nanocage increases their stability and cell uptake efficiency[J]. Food Res Int, 2014, 62:183-192. |
[83] | ZHOU Z K, SUN G Y, LIU Y Q, et al. A novel approach to prepare protein-proanthocyanidins nano-complexes by the reversible assembly of ferritin cage[J]. Food Sci Technol Res, 2017, 23(2):329-337. |
[1] | 陈玲, 陈浩, 岳婵娟, 马锐, 范雪阳, 刘颂蕊, 杨光友. 原核表达的褐黄血蜱唾液腺蛋白和铁蛋白1的免疫保护效果评价[J]. 畜牧兽医学报, 2024, 55(2): 688-697. |
[2] | 纪鹏, 张斌, 张春勇, 邢笑锟, 杨佳, 刘韶娜, 方碟, 潘洪彬, 赵彦光, 安清聪. 日粮添加乳铁蛋白对断奶仔猪肠道微生物多样性的影响[J]. 畜牧兽医学报, 2023, 54(7): 2942-2955. |
[3] | 刘雨珂, 徐倩倩, 孙佩芳, 陈美伊, 刘铭峰, 段德勇. 犬正常发情期与患子宫蓄脓的子宫和卵巢组织结构及乳铁蛋白表达的对比[J]. 畜牧兽医学报, 2021, 52(4): 1103-1114. |
[4] | 王雪莹, 高亢, 蔡吉垚, 张森豪, 解伟纯, 王晓娜, 崔文, 姜艳平, 周晗, 王丽, 乔薪瑗, 徐义刚, 李一经, 唐丽杰. 表达乳铁蛋白肽的猪源罗伊氏乳酸杆菌对断乳仔猪抗霍乱沙门菌感染的效果分析[J]. 畜牧兽医学报, 2021, 52(10): 2874-2886. |
[5] | 李志鹏, 刘福航, 崔奎青, 石德顺, 刘庆友. 铁蛋白Ferritin原核表达和纯化及纳米颗粒胞外自组装[J]. 畜牧兽医学报, 2018, 49(1): 75-82. |
[6] | 崔建敏,张念章,付宝权. 寄生虫水孔蛋白研究进展[J]. 畜牧兽医学报, 2015, 46(5): 689-695. |
[7] | 安清聪,徐娜娜,张春勇,潘洪彬,李美荃,陈克嶙,郭荣富. 不同水平乳铁蛋白对滇撒配套系仔猪生产性能、小肠形态学和机体抗病能力的影响[J]. 畜牧兽医学报, 2015, 46(12): 2206-2217. |
[8] | 吴正常,戴超辉,殷学梅,孙寿永,包文斌,吴圣龙. 猪LTβR基因克隆、结构功能预测、组织表达谱分析及真核表达载体构建[J]. 畜牧兽医学报, 2015, 46(12): 2135-2145. |
[9] | 江秀清,王丽丽,曹嫦妤,李楠,葛延松,张颖,李金龙. 鸡Heme oxygenase 1基因克隆、结构功能预测及组织表达特性分析[J]. 畜牧兽医学报, 2014, 45(1): 31-37. |
[10] | 余大为,张守峰,朱化彬,等. 转乳铁蛋白肽和α干扰素基因的牛胎儿成纤维细胞的制备[J]. 畜牧兽医学报, 2012, 43(10): 1547-1553. |
[11] | 何高明;张素华;赵宗胜;李大全. 隐性乳房炎奶牛IL-8受体与乳铁蛋白基因的PCR-SSCP分析[J]. 畜牧兽医学报, 2011, 42(1): 136-140. |
[12] | 陆嘉琦;高飞;刘萍;袁世山. 猪繁殖与呼吸综合征病毒5′ 非翻译区一茎环结构的功能解析[J]. 畜牧兽医学报, 2010, 41(11): 1428-1434. |
[13] | 郑月茂;刘凤军;何小宁;张涌. 转人乳铁蛋白基因山羊乳腺上皮细胞的研究[J]. 畜牧兽医学报, 2006, 37(12): 1282-1286. |
[14] | 白 霞;周金林;程天印;周勇志;刘 毅. 微小牛蜱铁蛋白编码基因的克隆和分析[J]. 畜牧兽医学报, 2005, 36(1): 66-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||