| 1 |
CHOI S K , KIM K S , RANYUK M , et al. Asia-wide phylogeography of wild boar (Sus scrofa) based on mitochondrial DNA and Y-chromosome: Revising the migration routes of wild boar in Asia[J]. PLoS One, 2020, 15 (8): e0238049.
doi: 10.1371/journal.pone.0238049
|
| 2 |
ZHANG M P , YANG Q , AI H S , et al. Revisiting the evolutionary history of pigs via de novo mutation rate estimation in a three-generation pedigree[J]. Genomics Proteomics Bioinformatics, 2022, 20 (6): 1040- 1052.
doi: 10.1016/j.gpb.2022.02.001
|
| 3 |
KARAMATI S A , EFFATPANAH H , KHODAYARI M T , et al. Global prevalence of Neospora caninum in ddomestic pigs (Sus domesticus) and wild boars (Sus scrofa): a systematic review and meta-analysis[J]. Vet Med Sci, 2025, 11 (1): e70207.
doi: 10.1002/vms3.70207
|
| 4 |
LIU Y L , ZHANG S H , ZOU G Y , et al. Generation and characterization of giant panda induced pluripotent stem cells[J]. Sci Adv, 2024, 10 (38): eadn7724.
doi: 10.1126/sciadv.adn7724
|
| 5 |
WU Y R , WANG C W , FAN X Y , et al. The impact of induced pluripotent stem cells in animal conservation[J]. Vet Res Commun, 2024, 48 (2): 649- 663.
doi: 10.1007/s11259-024-10294-3
|
| 6 |
TAKAHASHI K , YAMANAKA S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126 (4): 663- 676.
doi: 10.1016/j.cell.2006.07.024
|
| 7 |
YAMANAKA S . Pluripotent stem cell-based cell therapy-promise and challenges[J]. Cell Stem Cell, 2020, 27 (4): 523- 531.
doi: 10.1016/j.stem.2020.09.014
|
| 8 |
ZHANG Z W , BAO X Y , LIN C P . Progress and prospects of gene editing in pluripotent stem cells[J]. Biomedicines, 2023, 11 (8): 2168.
doi: 10.3390/biomedicines11082168
|
| 9 |
ZHU G X , GAO D F , LI L Z , et al. Generation of three-dimensional meat-like tissue from stable pig epiblast stem cells[J]. Nat Commun, 2023, 14 (1): 8163.
doi: 10.1038/s41467-023-44001-8
|
| 10 |
PACESA M , PELEA O , JINEK M . Past, present, and future of CRISPR genome editing technologies[J]. Cell, 2024, 187 (5): 1076- 1100.
doi: 10.1016/j.cell.2024.01.042
|
| 11 |
KIM T K , EBERWINE J H . Mammalian cell transfection: the present and the future[J]. Anal Bioanal Chem, 2010, 397 (8): 3173- 3178.
doi: 10.1007/s00216-010-3821-6
|
| 12 |
FUS-KUJAWA A , PRUS P , BAJDAK-RUSINEK K , et al. An overview of methods and tools for transfection of eukaryotic cells in vitro[J]. Front Bioeng Biotechnol, 2021, 9, 701031.
doi: 10.3389/fbioe.2021.701031
|
| 13 |
HAHN P , SCANLAN E . Gene delivery into mammalian cells: an overview on existing approaches employed in vitro and in vivo[J]. Top Curr Chem, 2010, 296, 1- 13.
|
| 14 |
NASO M F , TOMKOWICZ B , PERRY W R , et al. Adeno-associated virus (AAV) as a vector for gene therapy[J]. BioDrugs, 2017, 31 (4): 317- 334.
doi: 10.1007/s40259-017-0234-5
|
| 15 |
RAHIMI P , MOBARAKEH V I , KAMALZARE S , et al. Comparison of transfection efficiency of polymer-based and lipid-based transfection reagents[J]. Bratisl Lek Listy, 2018, 119 (11): 701- 705.
|
| 16 |
MIDOUX P , PICHON C , AOUANC J J , et al. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers[J]. Br J Pharmacol, 2009, 157 (2): 166- 178.
doi: 10.1111/j.1476-5381.2009.00288.x
|
| 17 |
LEAL A F , HERRENO-PACHON A M , BENINCORE-FLOREZ E , et al. Current strategies for increasing knock-in efficiency in CRISPR/Cas9-based approaches[J]. Int J Mol Sci, 2024, 25 (5): 2456.
doi: 10.3390/ijms25052456
|
| 18 |
SUZUKI K , IZPISUA BELMONTE J C . In vivo genome editing via the HITI method as a tool for gene therapy[J]. J Hum Genet, 2018, 63 (2): 157- 164.
doi: 10.1038/s10038-017-0352-4
|
| 19 |
FEBBRARO F , CHEN M , DENHAM M . Generation of human iPSCs by episomal reprogramming of skin fibroblasts and peripheral blood mononuclear cells[J]. Methods Mol Biol, 2021, 2239, 135- 151.
|
| 20 |
WANG J L , SUN S C , DENG H K . Chemical reprogramming for cell fate manipulation: methods, applications, and perspectives[J]. Cell Stem Cell, 2023, 30 (9): 1130- 1147.
doi: 10.1016/j.stem.2023.08.001
|
| 21 |
ZHU Q Q , WANG F C , GAO D F , et al. Generation of stable integration-free pig induced pluripotent stem cells under chemically defined culture condition[J]. Cell Prolif, 2023, 56 (11): e13487.
doi: 10.1111/cpr.13487
|
| 22 |
BATISTA N T , POLAJZER T , MIKLAVCIC D . Cell death due to electroporation - a review[J]. Bioelectrochemistry, 2021, 141, 107871.
doi: 10.1016/j.bioelechem.2021.107871
|
| 23 |
HAMADA T , YOKOYAMA S , AKAHANE T , et al. Electroporation induces unexpected alterations in gene expression: a tip for selection of optimal transfection method[J]. Curr Issues Mol Biol, 2025, 47 (2): 91.
doi: 10.3390/cimb47020091
|
| 24 |
PAVLOV R V , AKIMOV S A , DASHINIMAEV E B , et al. Boosting lipofection efficiency through enhanced membrane fusion mechanisms[J]. Int J Mol Sci, 2024, 25 (24): 13540.
doi: 10.3390/ijms252413540
|
| 25 |
CUESTA-GOMEZ N , VERHOEFF K , DADHEECH N , et al. Suspension culture improves iPSCs expansion and pluripotency phenotype[J]. Stem Cell Res Ther, 2023, 14 (1): 154.
doi: 10.1186/s13287-023-03382-9
|
| 26 |
胡暄, 王松, 于璐, 等. Cas9/sgRNA递送技术及其研究进展[J]. 生物工程学报, 2021, 37 (11): 3880- 3889.
|
|
HU X , WANG S , YU L , et al. Advances of Cas9/sgRNA delivery system for gene editing[J]. Chinese Journal of Biotechnology, 2021, 37 (11): 3880- 3889.
|
| 27 |
NAHAR S , SEHGAL P , AZHAR M , et al. A G-quadruplex motif at the 3' end of sgRNAs improves CRISPR-Cas9 based genome editing efficiency[J]. Chem Commun (Camb), 2018, 54 (19): 2377- 2380.
doi: 10.1039/C7CC08893K
|
| 28 |
HEIDERSBACH A J , DORIGHI K M , GOMEZ J A , et al. A versatile, high-efficiency platform for CRISPR-based gene activation[J]. Nat Commun, 2023, 14 (1): 902.
doi: 10.1038/s41467-023-36452-w
|
| 29 |
GUO C T , MA X T , GAO F , et al. Off-target effects in CRISPR/Cas9 gene editing[J]. Front Bioeng Biotechnol, 2023, 11, 1143157.
doi: 10.3389/fbioe.2023.1143157
|
| 30 |
JIN Y , HAN G C , GAO Y M , et al. Serum-tolerant polymeric complex for stem-cell transfection and neural differentiation[J]. Nat Commun, 2025, 16 (1): 2022.
doi: 10.1038/s41467-025-57278-8
|
| 31 |
CHEN Q C , CHUAI G H , ZHANG H H , et al. Genome-wide CRISPR off-target prediction and optimization using RNA-DNA interaction fingerprints[J]. Nat Commun, 2023, 14 (1): 7521.
doi: 10.1038/s41467-023-42695-4
|
| 32 |
BALKE-WANT H , KEERTHI V , GKITSAS N , et al. Homology-independent targeted insertion (HITI) enables guided CAR knock-in and efficient clinical scale CAR-T cell manufacturing[J]. Mol Cancer, 2023, 22 (1): 100.
doi: 10.1186/s12943-023-01799-7
|
| 33 |
LU H X , LIU J , FENG T , et al. A HIT-trapping strategy for rapid generation of reversible and conditional alleles using a universal donor[J]. Genome Res, 2021, 31 (5): 900- 909.
doi: 10.1101/gr.271312.120
|
| 34 |
YAMAMOTO Y , GERBI S A . Making ends meet: targeted integration of DNA fragments by genome editing[J]. Chromosoma, 2018, 127 (4): 405- 420.
doi: 10.1007/s00412-018-0677-6
|
| 35 |
MENG X , JIA R X , ZHAO X P , et al. In vivo genome editing via CRISPR/Cas9-mediated homology- independent targeted integration for Bietti crystalline corneoretinal dystrophy treatment[J]. Nat Commun, 2024, 15 (1): 3773.
doi: 10.1038/s41467-024-48092-9
|
| 36 |
KAWAMATA M , SUZUKI H I , KIMURA R , et al. Optimization of Cas9 activity through the addition of cytosine extensions to single-guide RNAs[J]. Nat Biomed Eng, 2023, 7 (5): 672- 691.
doi: 10.1038/s41551-023-01011-7
|
| 37 |
ZHANG M F , YI F , WU J J , et al. The efficient generation of knockout microglia cells using a dual-sgRNA strategy by CRISPR/Cas9[J]. Front Mol Neurosci, 2022, 15, 1008827.
doi: 10.3389/fnmol.2022.1008827
|
| 38 |
VAKULSKAS C A , DEVER D P , RETTIG G R , et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells[J]. Nat Med, 2018, 24 (8): 1216- 1224.
doi: 10.1038/s41591-018-0137-0
|
| 39 |
BRAVO J P K , LIU M S , HIBSHMAN G N , et al. Structural basis for mismatch surveillance by CRISPR-Cas9[J]. Nature, 2022, 603 (7900): 343- 347.
doi: 10.1038/s41586-022-04470-1
|